Pressure-driven flows of high molecular weight polyacrylamide solutions are examined in nanoslits using fluorescence photobleaching. The effective viscosity of polymer solutions decreases when the channel height decreases below the micron scale. In addition, the apparent slippage of the solutions is characterized macroscopically on similar surfaces. Though slippage can explain qualitatively the effective viscosity reduction, a quantitative comparison shows that the slip length is greatly reduced below the micron scale. This result indicates that chain migration is suppressed in confined geometries.
Velocity measurement is a key issue when studying flows below the micron scale, due to the lack of sensitivity of conventional detection techniques. We present an approach based on fluorescence photobleaching to evaluate flow velocity at the nanoscale by direct visualization. Solutions containing a fluorescent dye are injected into nanoslits. A photobleached line, created through laser beam illumination, moves through the channel due to the fluid flow. The velocity and effective diffusion coefficient are calculated from the temporal data of the line position and width respectively. The measurable velocity range is only limited by the diffusion rate of the fluorescent dye for low velocities and by the apparition of Taylor dispersion for high velocities. By controlling the pressure drop and measuring the velocity, we determine the fluid viscosity. The photobleached line spreads in time due to molecular diffusion and Taylor hydrodynamic dispersion. By taking into account the finite spatial and temporal extensions of the bleaching under flow, we determine the effective diffusion coefficient, which we find to be in good agreement with the expression of the two dimensional Taylor-Aris dispersion coefficient. Finally we analyze and discuss the role of the finite width of the rectangular slit on hydrodynamic dispersion.
Miscibility with oil lies among the main advantages of dense CO2 injection for pore scale oil displacement during tertiary recovery. At reservoir scale, injecting dense CO2 in the form of foam can also improve its sweep efficiency. However, although the use of such miscible dense CO2 foams has been considered in over twenty pilots since the 1980's, only few lab studies have considered foams formed with CO2 in this particular thermodynamical state. Indeed, dense CO2 has solvation properties and a viscosity higher than that of a gas. This impacts several attributes of its foams in porous media, such as Mobility Reduction Factors (MRF) and behavior in presence of oil. We present new results demonstrating that classical foamers are not effective in improving mobility control of dense CO2, but that relatively high MRF are achieved using carefully formulated surfactants. Based on these findings, we study the impact of foam on miscible flooding efficiency in corefloods. Reversely, we also evaluate how miscibility of CO2 with oil impacts foam MRF. Our approach is based on multiple corefloods experiments, with different formulations, at various oil saturations. Additionally, physical-chemistry measurements such as interfacial tension estimations and foam stability monitoring are performed in reservoir conditions (pressure and temperature). This set of experiments shows that a balance must be found between maximizing MRF and minimizing the risk of emulsion formation in porous media. This paper brings new insights on the interpretation of CO2 foams coreflood results, based on the thermodynamical properties of the CO2 phase. It provides the reader with a clearer view of gas properties that must be considered when analyzing results of dense CO2 foams corefloods. This can help reconcile seemingly contradictory results appearing in the literature, particularly regarding the values of MRF as a function of pressure and in the presence of oil.
We present an experimental study of drainage in two-dimensional porous media exhibiting bimodal pore size distributions. The role of the pore size heterogeneity is investigated by measuring separately the desaturation curves of the two pore populations. The displaced wetting fluid remains trapped in small pores at low capillary numbers and is swept only above a critical capillary number proportional to the permeability of the big pores network. Based on this observation, we derive a simple criterion for phase trapping based on the balance of viscous to capillary forces. Numerical implementation of this theory in a pore network model quantitatively fits our experimental results. This combination of approaches demonstrates quantitatively the influence of geometrical heterogeneities on drainage in porous media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.