Microtubule-Targeting Agents (MTAs) constitute a class of drugs largely used for cancer treatment in adults and children. In cancer cells, they suppress microtubule dynamics, and induce cell death via the mitochondrial intrinsic pathway. To date, links between mitochondria and microtubule network disturbance in MTAs mechanism of action are not obvious. The aim of the present contribution is to provide elements that could answer to the question: how far are mitochondria essential to anticancer chemotherapy that targets the microtubule cytoskeleton? We review the main molecular candidates to link microtubule alteration with the apoptotic mitochondrial pathway control. Involvement of direct targeting of mitochondria in MTA efficacy is also discussed. Furthermore, we line up current evidence and emerging concepts on the participation of both mitochondria and microtubule in MTA neurotoxic side effects. To decipher the interconnections between the mitochondrial and the microtubule networks may help to improve cancer cell response to chemotherapy.
The microtubule protein tubulin is a heterodimer comprising / subunits, in which each subunit features multiple isotypes in vertebrates. For example, seven -tubulin and eight -tubulin isotypes in the human tubulin gene family vary mostly in the length and primary sequence of the disordered anionic C-terminal tails (CTTs). The biological reason for such sequence diversity remains a topic of vigorous enquiry. Here, we demonstrate that it may be a key feature of tubulin's role in regulation of the permeability of the mitochondrial outer membrane voltagedependent anion channel (VDAC). Using recombinant yeast /-tubulin constructs with -CTTs, -CTTs, or both from various human tubulin isotypes, we probed their interactions with VDAC reconstituted into planar lipid bilayers. A comparative study of the blockage kinetics revealed that either -CTTs or -CTTs block VDAC pore and that the efficiency of blockage by individual CTTs spans two orders of magnitude, depending on the CTT isotype.-Tubulin constructs, notably 3, blocked VDAC most effectively. We quantitatively describe these experimental results using a physical model that accounts only for the number and distribution of charges in the CTT, and not for the interactions between specific residues on the CTT and VDAC pore. Based on these results, we speculate that the effectiveness of VDAC regulation by tubulin depends on the predominant tubulin isotype in a cell. Consequently, the fluxes of ATP/ADP http://www.jbc.org/cgi
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.