Classical BCR-ABL-negative myeloproliferative neoplasms (MPN) are clonal disorders of hematopoietic stem cells (HSC) caused mainly by recurrent mutations in genes encoding JAK2 (JAK2), calreticulin (CALR), or the thrombopoietin receptor (MPL). Interferon alpha (IFNα) has demonstrated some efficacy in inducing molecular remission in MPN. In order to determine factors that influence molecular response rate, we evaluated the long-term molecular efficacy of IFNα in MPN patients by monitoring the fate of cells carrying driver mutations in a prospective observational and longitudinal study of 48 patients over more than 5 years. We measured several times per year the clonal architecture of early and late hematopoietic progenitors (84,845 measurements) and the global variant allele frequency in mature cells (409 measurements). Using mathematical modeling and hierarchical Bayesian inference, we further inferred the dynamics of IFNα-targeted mutated HSC. Our data support the hypothesis that IFNα targets JAK2V617F HSC by inducing their exit from quiescence and differentiation into progenitors. Our observations indicate that treatment efficacy is higher in homozygous than heterozygous JAK2V617F HSC and increases with high IFNα dosage in heterozygous JAK2V617F HSC. Besides, we found that the molecular responses of CALRm HSC to IFNα were heterogeneous, varying between type 1 and type 2 CALRm, and high dosage of IFNα correlates with worse outcomes. Together, our work indicates that the long-term molecular efficacy of IFNα implies an HSC exhaustion mechanism and depends on both the driver mutation type and IFNα dosage.
Mutant calreticulin (CALR) proteins resulting from a -1/+2 frameshifting mutation of the CALR exon 9 carry a novel C-terminal amino-acid sequence and drive the development of myeloproliferative neoplasms (MPNs). Mutant CALRs were shown to interact with and activate the thrombopoietin receptor (TpoR/MPL) in the same cell. We report that mutant CALR proteins are secreted and can be found in patient plasma at levels up to 160ng/mL, with a mean of 25.64ng/mL. Plasma mutant CALR is found in complex with soluble Transferrin Receptor 1 (sTFRC) that acts as a carrier protein and increases CALR mutant half-life. Recombinant mutant CALR proteins bound and activated the TpoR on cell lines and primary megakaryocytic progenitors from CALR-mutated patients where they drive Tpo-independent colony formation. Importantly, the CALR-sTFRC complex remains functional for TpoR activation. By bioluminescence resonance energy transfer assay, we show that mutant CALR proteins produced in one cell can specifically interact in trans with the TpoR on a target cell. Cells that carry both TpoR and mutant CALR are hypersensitive to exogenous CALR mutant proteins in comparison to cells that only carry TpoR, and respond to levels of CALR mutant proteins similar to those in patient plasma. This is consistent with CALR mutated cells exposing at the cell-surface TpoR carrying immature N-linked sugars. Thus, secreted mutant CALR proteins will act more specifically on the MPN clone. In conclusion, a chaperone, CALR, can turn into a rogue cytokine through somatic mutation of its encoding gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.