Oaks are an important part of our natural and cultural heritage. Not only are they ubiquitous in our most common landscapes but they have also supplied human societies with invaluable services, including food and shelter, since prehistoric times. With 450 species spread throughout Asia, Europe and America, oaks constitute a critical global renewable resource. The longevity of oaks (several hundred years) probably underlies their emblematic cultural and historical importance. Such long-lived sessile organisms must persist in the face of a wide range of abiotic and biotic threats over their lifespans. We investigated the genomic features associated with such a long lifespan by sequencing, assembling and annotating the oak genome. We then used the growing number of whole-genome sequences for plants (including tree and herbaceous species) to investigate the parallel evolution of genomic characteristics potentially underpinning tree longevity. A further consequence of the long lifespan of trees is their accumulation of somatic mutations during mitotic divisions of stem cells present in the shoot apical meristems. Empirical and modelling approaches have shown that intra-organismal genetic heterogeneity can be selected for and provides direct fitness benefits in the arms race with short-lived pests and pathogens through a patchwork of intra-organismal phenotypes. However, there is no clear proof that large-statured trees consist of a genetic mosaic of clonally distinct cell lineages within and between branches. Through this case study of oak, we demonstrate the accumulation and transmission of somatic mutations and the expansion of disease-resistance gene families in trees.
; for the French Parkinson's and Movement Disorders Consortium IMPORTANCE Movement disorders are characterized by a marked genotypic and phenotypic heterogeneity, complicating diagnostic work in clinical practice and molecular diagnosis. OBJECTIVE To develop and evaluate a targeted sequencing approach using a customized panel of genes involved in movement disorders. DESIGN, SETTING AND PARTICIPANTS We selected 127 genes associated with movement disorders to create a customized enrichment in solution capture array. Targeted high-coverage sequencing was applied to DNA samples taken from 378 eligible patients at 1 Luxembourgian, 1 Algerian, and 25 French tertiary movement disorder centers between September 2014 and July 2016. Patients were suspected of having inherited movement disorders because of early onset, family history, and/or complex phenotypes. They were divided in 5 main movement disorder groups: parkinsonism, dystonia, chorea, paroxysmal movement disorder, and myoclonus. To compare approaches, 23 additional patients suspected of having inherited cerebellar ataxia were included, on whom whole-exome sequencing (WES) was done. Data analysis occurred from November 2015 to October 2016. MAIN OUTCOMES AND MEASURES Percentages of individuals with positive diagnosis, variants of unknown significance, and negative cases; mutational frequencies and clinical phenotyping of genes associated with movement disorders. RESULTS Of the 378 patients (of whom 208 were male [55.0%]), and with a median (range) age at disease onset of 31 (0-84) years, probable pathogenic variants were identified in 83 cases (22.0%): 46 patients with parkinsonism (55% of 83 patients), 21 patients (25.3%) with dystonia, 7 patients (8.4%) with chorea, 7 patients (8.4%) with paroxysmal movement disorders, and 2 patients (2.4%) with myoclonus as the predominant phenotype. Some genes were mutated in several cases in the cohort. Patients with pathogenic variants were significantly younger (median age, 27 years; interquartile range [IQR], 5-36 years]) than the patients without diagnosis (median age, 35 years; IQR, 15-46 years; P = .04). Diagnostic yield was significantly lower in patients with dystonia (21 of 135; 15.6%; P = .03) than in the overall cohort. Unexpected genotype-phenotype correlations in patients with pathogenic variants deviating from the classic phenotype were highlighted, and 49 novel probable pathogenic variants were identified. The WES analysis of the cohort of 23 patients with cerebellar ataxia led to an overall diagnostic yield of 26%, similar to panel analysis but at a cost 6 to 7 times greater. CONCLUSIONS AND RELEVANCE High-coverage sequencing panel for the delineation of genes associated with movement disorders was efficient and provided a cost-effective diagnostic alternative to whole-exome and whole-genome sequencing.
Background: A key step in domestication of the grapevine was the transition from separate sexes (dioecy) in wild Vitis vinifera ssp. sylvestris (V. sylvestris) to hermaphroditism in cultivated Vitis vinifera ssp. sativa (V. vinifera). It is known that V. sylvestris has an XY system and V. vinifera a modified Y haplotype (Yh) and that the sex locus is small, but it has not previously been precisely characterized. Results: We generate a high-quality de novo reference genome for V. sylvestris, onto which we map whole-genome re-sequencing data of a cross to locate the sex locus. Assembly of the full X, Y, and Yh haplotypes of V. sylvestris and V. vinifera sex locus and examining their gene content and expression profiles during flower development in wild and cultivated accessions show that truncation and deletion of tapetum and pollen development genes on the X haplotype likely causes male sterility, while the upregulation of a Y allele of a cytokinin regulator (APRT3) may cause female sterility. The downregulation of this cytokinin regulator in the Yh haplotype may be sufficient to trigger reversal to hermaphroditism. Molecular dating of X and Y haplotypes is consistent with the sex locus being as old as the Vitis genus, but the mechanism by which recombination was suppressed remains undetermined. Conclusions: We describe the genomic and evolutionary characterization of the sex locus of cultivated and wild grapevine, providing a coherent model of sex determination in the latter and for transition from dioecy to hermaphroditism during domestication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.