Tracking the progress of an infectious disease is critical during a pandemic. However, the incubation period, diagnosis, and treatment most often cause uncertainties in the reporting of both cases and deaths, leading in turn to unreliable death rates. Moreover, even if the reported counts were accurate, the “crude” estimates of death rates which simply divide country-wise reported deaths by case numbers may still be poor or even non-computable in the presence of small (or zero) counts. We present a novel methodological contribution which describes the problem of analyzing COVID-19 data by two nested Poisson models: (i) an “upper model” for the cases infected by COVID-19 with an offset of population size, and (ii) a “lower” model for deaths of COVID-19 with the cases infected by COVID-19 as an offset, each equipped with their own random effect. This approach generates robustness in both the numerator as well as the denominator of the estimated death rates to the presence of small or zero counts, by “borrowing” information from other countries in the overall dataset, and guarantees positivity of both the numerator and denominator. The estimation will be carried out through non-parametric maximum likelihood which approximates the random effect distribution through a discrete mixture. An added advantage of this approach is that it allows for the detection of latent subpopulations or subgroups of countries sharing similar behavior in terms of their death rates.
Random effect models have been popularly used as a mainstream statistical technique over several decades; and the same can be said for response transformation models such as the Box–Cox transformation. The latter aims at ensuring that the assumptions of normality and of homoscedasticity of the response distribution are fulfilled, which are essential conditions for inference based on a linear model or a linear mixed model. However, methodology for response transformation and simultaneous inclusion of random effects has been developed and implemented only scarcely, and is so far restricted to Gaussian random effects. We develop such methodology, thereby not requiring parametric assumptions on the distribution of the random effects. This is achieved by extending the ‘Nonparametric Maximum Likelihood’ towards a ‘Nonparametric profile maximum likelihood’ technique, allowing to deal with overdispersion as well as two-level data scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.