Cerebral malaria (CM), a fatal complication of Plasmodium infection that affects children, especially under the age of five, in sub-Saharan Africa and adults in South-East Asia, results from incompletely understood pathogenetic mechanisms. Increased release of circulating miRNA, proteins, lipids and extracellular vesicles has been found in CM patients and experimental mouse models. We compared lipid profiles derived from the plasma of CBA mice infected with Plasmodium berghei ANKA (PbA), which causes CM, to those from Plasmodium yoelii (Py), which does not. We previously showed that platelet-free plasma (18k fractions enriched from plasma) contains a high number of extracellular vesicles (EVs). Here, we found that this fraction produced at the time of CM differed dramatically from those of non-CM mice, despite identical levels of parasitaemia. Using high-resolution liquid chromatography–mass spectrometry (LCMS), we identified over 300 lipid species within 12 lipid classes. We identified 45 and 75 lipid species, mostly including glycerolipids and phospholipids, with significantly altered concentrations in PbA-infected mice compared to Py-infected and uninfected mice, respectively. Total lysophosphatidylethanolamine (LPE) levels were significantly lower in PbA infection compared to Py infection and controls. These results suggest that experimental CM could be characterised by specific changes in the lipid composition of the 18k fraction containing circulating EVs and can be considered an appropriate model to study the role of lipids in the pathophysiology of CM.
The liver, skeletal muscle, and adipose tissue are major insulin target tissues and key players in glucose homeostasis. We and others have described diverse insulin resistance (IR) phenotypes in people at risk of developing type 2 diabetes. It is postulated that identifying the IR phenotype in a patient may guide the treatment or the prevention strategy for better health outcomes in populations at risk. Here, we performed plasma metabolomics and lipidomics in a cohort of men and women living with obesity not complicated by diabetes (mean [SD] BMI 36.0 [4.5] kg/m2, n = 62) to identify plasma signatures of metabolites and lipids that align with phenotypes of IR (muscle, liver, or adipose tissue) and abdominal fat depots. We used 2-step hyperinsulinemic-euglycemic clamp with deuterated glucose, oral glucose tolerance test, dual-energy X-ray absorptiometry and abdominal magnetic resonance imaging to assess muscle-, liver- and adipose tissue- IR, beta cell function, body composition, abdominal fat distribution and liver fat, respectively. Spearman’s rank correlation analyses that passed the Benjamini–Hochberg statistical correction revealed that cytidine, gamma-aminobutyric acid, anandamide, and citrate corresponded uniquely with muscle IR, tryptophan, cAMP and phosphocholine corresponded uniquely with liver IR and phenylpyruvate and hydroxy-isocaproic acid corresponded uniquely with adipose tissue IR (p < 7.2 × 10−4). Plasma cholesteryl sulfate (p = 0.00029) and guanidinoacetic acid (p = 0.0001) differentiated between visceral and subcutaneous adiposity, while homogentisate correlated uniquely with liver fat (p = 0.00035). Our findings may help identify diverse insulin resistance and adiposity phenotypes and enable targeted treatments in people living with obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.