Viruses hijack host metabolic pathways for their replicative advantage. In this study, using patient-derived multi-omics data and in vitro infection assays, we aimed to understand the role of key metabolic pathways that can regulate severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) reproduction and their association with disease severity. We used multi-omics platforms (targeted and untargeted proteomics and untargeted metabolomics) on patient samples and cell line models along with immune phenotyping of metabolite transporters in patient blood to understand viral-induced metabolic modulations. We also modulated key metabolic pathways that were identified using multi-omics data to regulate the viral reproduction in vitro . COVID-19 disease severity was characterized by increased plasma glucose and mannose levels. Immune phenotyping identified altered expression patterns of carbohydrate transporter, GLUT1, in CD8 + T-cells, intermediate and non-classical monocytes, and amino acid transporter, xCT, in classical, intermediate, and non-classical monocytes. In in vitro lung epithelial cell (Calu-3) infection model we found that glycolysis and glutaminolysis are essential for virus replication and blocking these metabolic pathways caused significant reduction in virus production. Taken together, we therefore hypothesized that SARS-CoV-2 utilizes and rewires pathways governing central carbon metabolism leading to the efflux of toxic metabolites and associated with disease severity. Thus, the host metabolic perturbation could be an attractive strategy to limit the viral replication and disease severity.
The blind mole rat (Spalax) is a wild, long-lived rodent that has evolved mechanisms to tolerate hypoxia and resist cancer. Previously, we demonstrated high DNA repair capacity and low DNA damage in Spalax fibroblasts following genotoxic stress compared with rats. Since the acquisition of senescence-associated secretory phenotype (SASP) is a consequence of persistent DNA damage, we investigated whether cellular senescence in Spalax is accompanied by an inflammatory response. Spalax fibroblasts undergo replicative senescence (RS) and etoposide-induced senescence (EIS), evidenced by an increased activity of senescence-associated beta-galactosidase (SA-β-Gal), growth arrest, and overexpression of p21, p16, and p53 mRNAs.Yet, unlike mouse and human fibroblasts, RS and EIS Spalax cells showed undetectable or decreased expression of the well-known SASP factors: interleukin-6 (IL6), IL8, IL1α, growth-related oncogene alpha (GROα), SerpinB2, and intercellular adhesion molecule (ICAM-1). Apparently, due to the efficient DNA repair in Spalax, senescent cells did not accumulate the DNA damage necessary for SASP activation. Conversely, Spalax can maintain DNA integrity during replicative or moderate genotoxic stress and limit pro-inflammatory secretion. However, exposure to the conditioned medium of breast cancer cells MDA-MB-231 resulted in an increase in DNA damage, activation of the nuclear factor κB (NF-κB) through nuclear translocation, and expression of inflammatory mediators in RS Spalax cells. Evaluation of SASP in aging Spalax brain and intestine confirmed downregulation of inflammatory-related genes. These findings suggest a natural mechanism for alleviating the inflammatory response during cellular senescence and aging in Spalax, which can prevent age-related chronic inflammation supporting healthy aging and longevity. K E Y W O R D S cellular senescence, DNA damage, DNA repair, interleukin-1 alpha (IL1α), nuclear factor κB (NF-κB), senescence-associated secretory phenotype (SASP), Spalax S U PP O RTI N G I N FO R M ATI O N Additional supporting information may be found online in the Supporting Information section at the end of the article. How to cite this article: Odeh A, Dronina M, Domankevich V, Shams I, Manov I. Downregulation of the inflammatory network in senescent fibroblasts and aging tissues of the longlived and cancer-resistant subterranean wild rodent, Spalax.
Blind mole rats of the genus are the only mammalian species to date for which spontaneous cancer has never been reported and resistance to carcinogen-induced cancers has been demonstrated. However, the underlying mechanisms are still poorly understood. The fact that spp. are also hypoxia-tolerant and long-lived species implies the presence of molecular adaptations to prevent genomic instability, which underlies both cancer and aging. We previously demonstrated the upregulation of transcripts related to DNA replication and repair pathways in Yet, to date, no direct experimental evidence for improved genomic maintenance has been demonstrated for this genus. Here, we show that compared with skin fibroblasts of the above-ground rat, skin fibroblasts in culture resist several types of genotoxic insult, accumulate fewer genotoxic lesions and exhibit an enhanced DNA repair capacity. Our results strongly support that this species has evolved efficient mechanisms to maintain DNA integrity as an adaptation to the stressful conditions in the subterranean habitat.
Progressive age is the single major risk factor for neurodegenerative diseases. Cellular aging markers during Parkinson’s disease (PD) have been implicated in previous studies, however the majority of studies have investigated the association of individual cellular aging hallmarks with PD but not jointly. Here, we have studied the association of PD with three aging hallmarks (telomere attrition, mitochondrial dysfunction, and cellular senescence) in blood and the brain tissue. Our results show that PD patients had 20% lower mitochondrial DNA copies but 26% longer telomeres in blood compared to controls. Moreover, telomere length in blood was positively correlated with medication (Levodopa Equivalent Daily Dose, LEDD) and disease duration. Similar results were found in brain tissue, where patients with Parkinson’s disease (PD), Parkinson’s disease dementia (PDD) and Dementia with Lewy Bodies (DLB) showed (46–95%) depleted mtDNA copies, but (7–9%) longer telomeres compared to controls. In addition, patients had lower mitochondrial biogenesis (PGC-1α and PGC-1β) and higher load of a cellular senescence marker in postmortem prefrontal cortex tissue, with DLB showing the highest effect among the patient groups. Our results suggest that mitochondrial dysfunction (copy number and biogenesis) in blood might be a valuable marker to assess the risk of PD. However, further studies with larger sample size are needed to evaluate these findings.
Viruses hijack host metabolic pathways for their replicative advantage. Several observational trans-omics analyses associated carbon and amino acid metabolism in coronavirus disease 2019 (COVID-19) severity in patients but lacked mechanistic insights. In this study, using patient- derived multi-omics data and in vitro infection assays, we aimed to understand i) role of key metabolic pathways in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) reproduction and ii) its association with disease severity. Our data suggests that monocytes are key to the altered immune response during COVID-19. COVID-19 infection was associated with increased plasma glutamate levels, while glucose and mannose levels were determinants of the disease severity. Monocytes showed altered expression pattern of carbohydrate and amino acid transporters, GLUT1 and xCT respectively in severe COVID-19. Furthermore, lung epithelial cells (Calu-3) showed a strong acute metabolic adaptation following infection in vitro by modulating central carbon metabolism. We found that glycolysis and glutaminolysis are essential for virus replication and blocking these metabolic pathways caused significant reduction in virus production. Taken together, our study highlights that the virus utilizes and re-wires pathways governing central carbon metabolism leading to metabolic toxicity. Thus, the host metabolic perturbation could be an attractive strategy to limit the viral replication and disease severity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.