The logarithmic divergence is an extension of the Bregman divergence motivated by optimal transport and a generalized convex duality, and satisfies many remarkable properties. Using the geometry induced by the logarithmic divergence, we introduce a generalization of continuous time mirror descent that we term the conformal mirror descent. We derive its dynamics under a generalized mirror map, and show that it is a time change of a corresponding Hessian gradient flow. We also prove convergence results in continuous time. We apply the conformal mirror descent to online estimation of a generalized exponential family, and construct a family of gradient flows on the unit simplex via the Dirichlet optimal transport problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.