In this work subtleties of application of BET isotherm for liquid phase adsorption is presented. It has been shown that direct use of the classical BET equation (which was developed for gas phase adsorption) to liquid phase adsorption leads to ambiguous and erroneous results. Some cases of misuse of BET equation for liquid phase adsorption have been revisited. By close examination of the development of the classical equation, the causes of misunderstandings were elucidated and the suitable form of the BET equation for liquid phase adsorption was developed. As case studies, the classical form of the BET equation along with the correct form of the equation for liquid phase have been applied for modeling liquid phase adsorption of methyl tertbutyl ether (MTBE) on perfluorooctyl alumina, phenol on activated carbon and pentachlorophenol on carbonized bark. It has been shown that direct application of the classical BET isotherm to liquid phase adsorption results in poor and erroneous estimation of the equation parameters. For example, in aqueous phase adsorption of MTBE on perfluorooctyl alumina, the monolayer adsorption capacity of the adsorbent was calculated as 9.7 mg/g instead of 3.3 mg/g or the saturation concentration of MTBE in water was calculated as 1212 mg/L instead of 42000 mg/L.
Nanostructured CuO-ZnO-Al2O3/HZSM-5 was synthesized from nitrate and acetate precursors using ultrasound assisted co-precipitation method under different irradiation powers. The CuO-ZnO-Al2O3/HZSM-5 nanocatalysts were characterized using XRD, FESEM, BET, FTIR and EDX Dot-mapping analyses. The results indicated precursor type and irradiation power have significant influences on phase structure, morphology, surface area and functional groups. It was observed that the acetate formulated CuO-ZnO-Al2O3/HZSM-5 nanocatalyst have smaller CuO crystals with better dispersion and stronger interaction between components in comparison to nitrate based nanocatalysts. Ultrasound assisted co-precipitation synthesis method resulted in nanocatalyst with more uniform morphology compared to conventional method and increasing irradiation power yields smaller particles with better dispersion and higher surface area. Additionally the crystallinity of CuO is lower at high irradiation powers leading to stronger interaction between metal oxides. The nanocatalysts performance were tested at 200-300 °C, 10-40 bar and space velocity of 18,000-36,000 cm(3)/g h with the inlet gas composition of H2/CO = 2/1 in a stainless steel autoclave reactor. The acetate based nanocatalysts irradiated with higher levels of power exhibited better reactivity in terms of CO conversion and DME yield. While there is an optimal temperature for CO conversion and DME yield in direct synthesis of DME, CO conversion and DME yield both increase with the pressure increase. Furthermore ultrasound assisted co-precipitation method yields more stable CuO-ZnO-Al2O3/HZSM-5 nanocatalyst while conventional precipitated nanocatalyst lost their activity ca. 18% and 58% in terms of CO conversion and DME yield respectively in 24 h time on stream test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.