In this study, biodiesel was produced using waste cooking oil that was discarded as a waste in the environment. The properties of the feedstock were determined using standard ASTM methods. The transesterification process was implemented to extract the biodiesel, and this process was optimized and standardized by selecting three different parameters: molar ratio (methanol:oil), catalyst concentration (KOH) and reaction temperature. The physicochemical properties of the biodiesel so produced were tested and analyzed using gas chromatography. Biodiesel and diesel were mixed in different volumetric ratios, and the exhaust emission characteristics of the blends were determined by testing the blends on a variable compression ratio engine. The study concluded that waste cooking oil has a great potential for waste to energy process. The highest yield of 93.8% was obtained by optimizing the process. Emission characteristics of CO for B50 blend showed a downward trend while NO x emission was found to be greater for blending ratios above 10%. B10 showed the best results pertaining to lower NO x and CO emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.