Groundwater is one of the most important sources of drinking water in Kafta Humera Woreda; hence, it is important to assess the quality of these water sources. The aim of this study was to assess the levels of some physicochemical parameters and heavy metals in hand-dug well water sources of Kafta Humera Woreda. The results showed that the physicochemical concentrations of the hand-dug well water samples were given as follows: temperature, 27.67 ± 0.15 to 28.30 ± 0.25°C; pH, 6.90 ± 0.33 to 8.20 ± 0.36; dissolved oxygen, 5.60 ± 0.06 to 6.2 ± 0.04 mg/L; turbidity, 1.67 ± 0.02 to 1.89 ± 0.03 NTU; EC, 148.50 ± 0.89 to 932.00 ± 0.98 μS/cm; TDS, 105.80 ± 0.62 to 664.28 ± 0.70 mg/L; total hardness, 71.80 ± 3.05 to 295.30 ± 2.38 mg/L; total alkalinity, 75 ± 5.0 to 215 ± 5.0 mg/L; calcium, 12.02 ± 0.82 to 75.88 ± 0.93 mg/L; magnesium, 9.80 ± 0.80 to 25.70 ± 0.17 mg/L; potassium, 0.130 ± 0.003 to 0.86 ± 0.04 mg/L; sodium, 2.20 ± 0.16 to 12.75 ± 0.87 mg/L; chloride, 12.86 ± 0.02 to 42.72 ± 0.20 mg/L; sulfate, 17.24 ± 0.96 to 118.67 ± 0.46 mg/L; phosphate, 0.018 ± 0.005 to 0.020 ± 0.002 mg/L; and nitrate, 1.86 ± 0.03 to 5.43 ± 0.06 mg/L. Generally, the concentrations of most physicochemical parameters of the hand-dug well water samples of Kafta Humera Woreda were within the permissible limit of World Health Organization and Ethiopian Standard Agency guideline for drinking water. The statistical Pearson’s correlation analysis on the water quality parameters revealed that all parameters are more or less correlated with each other. Electrical conductivity and total dissolved solids of the water samples were found to be significantly correlated with total hardness (r = 0.989), total alkalinity (r = 0.827), calcium (r = 0.988), magnesium (r = 0.881), sodium (r = 0.995), potassium(r = 0.996), chloride (r = 0.998), sulfate (r = 1), and nitrate ions (r = 0.972). Out of the selected seven heavy metals, Fe, Cu, Zn, Mn, Cr, Cd, and Pb, only iron was detected in all water samples and its concentration was above the permissible limit of WHO and ESA for drinking water. Therefore, the government should adopt some treatment technologies such as sedimentation and aeration to minimize the concentration of iron for safe drinking the water to the community of Kafta Humera Woreda.
Polyaniline-modified natural fibers have been recognized as promising candidates for conductive clothes, UV protection, and electromagnetic interference shielding. Hence, the purpose of this study was to investigate the effect of surface deposition of cotton fibers using polyaniline via in situ polymerization, and preceding structural changes were further screened by FT-IR, UV-Vis, TGA, SEM/EDX, and conductivity in comparison with bare cotton fibers used as the control sample. Polyaniline was introduced on the surface of cotton fibers as a conductive form, which was confirmed by electrical conductivity (1.54 × 10−4 Scm−1) equivalent to semiconductor materials. Detection of particular peaks at NKα 0.379 keV and ClKα 2.621 keV from EDX analysis revealed the introduction of nitrogen and chlorine, respectively. Polyaniline deposition on the cotton surface was successful to introduce hydrophobic environment to the system to enhance resistance to water absorption meaningfully.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.