The relational database is the way of maintaining, storing, and accessing structured data but in order to access the data in that database the queries need to be translated in the format of SQL queries. Using natural language rather than SQL has introduced the advancement of a new kind of handling strategy called Natural Language Interface to Database frameworks (NLIDB). NLIDB is a stage towards the turn of events of clever data set frameworks (IDBS) to upgrade the clients in performing adaptable questioning in data sets. A model that can deduce relational database queries from natural language. Advanced neural algorithms synthesize the end-to-end SQL to text relation which results in the accuracy of 80% on the publicly available datasets. In this paper, we reviewed the existing framework and compared them based on the aggregation classifier, select column pointer, and the clause pointer. Furthermore, we discussed the role of semantic parsing and neural algorithm’s contribution in predicting the aggregation, column pointer, and clause pointer. In particular, people with limited background knowledge are unable to access databases with ease. Using natural language interfaces for relational databases is the solution to make natural language to SQL queries. This paper presents a review of the existing framework to process natural language to SQL queries and we will also cover some of the speech to SQL model in discussion section, in order to understand their framework and to highlight the limitations in the existing models.
The rapid advancement of the internet and its exponentially increasing usage has also exposed it to several vulnerabilities. Consequently, it has become an extremely important that can prevent network security issues. One of the most commonly implemented solutions is Intrusion Detection System (IDS) that can detect unusual attacks and unauthorized access to a secured network. In the past, several machine learning algorithms have been evaluated on the KDD intrusion dataset. However, this paper focuses on the implementation of the four machine learning algorithms: KNN, Random Forest, gradient boosted tree and decision tree. The models are also implemented through the Auto Model feature to determine its convenience. The results show that Gradient Boosted trees have achieved the highest accuracy (99.42%) in comparison to random forest algorithm that achieved the lowest accuracy (93.63%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.