The impact of cupral compound on steel in presence of deaerated 0.25 M H 2 SO 4 and 0.5M HCl acidic solutions at 298.15K was examined by employing electrochemical measurements. It has been observed that the corrosion efficiency increased by increasing of cupral concentration of the corrosion inhibitor and this enhanced the inhibitory action as mixed type inhibitor. Several different adsorption models were examined which indicate the adsorption of cupral compound as inhibitor on the carbon steel electrode surface follows the Langmuir isotherm equation. The thermodynamic factors governing adsorption, as well as the parameters of kinetics corrosion have been estimated. The role of nanosilica has been observed to reduce the values of current density of corrosion process and this was confirmed by study the surface morphology of electrode via SEM-EDX and AFM techniques by formation a protective layer on carbon steel electrode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.