Non-skeletal carbonate particles in microbial mats were studied using thin sections and scanning electron microscopy. The microbial mats form biolaminated units (so-called potential stromatolites) in salterns. This study emphasizes the coexistence of different particle forms and makes a genetic connection between the heterogeneity of the organic substrate built by bacteria and diatoms and their extracellular polymeric substances (EPS). Whereas allochthonous particles are scarce, Lanzarote microbial mats provide various autochthonous surfaces for the attachment of cells and EPS, including sheaths and capsules of cyanobacteria, frustules of diatoms, metabolic products such as gas bubbles, liquid globules and faecal pellets, as well as the carbonate precipitates themselves. Morphologically different carbonate precipitates are: (i) calcified organic clumps (peloids), (ii) particles composed of concentric aragonite and biofilm laminae (ooids and oncoids), (iii) isolated particles floating in gel-supported mats and coated by rims of fibrous cement (cortoids), (iv) particles bound by cryptocrystalline matrices or cement, resulting in aggregate grains and (v) lobate cement which fills out spaces and pores and fixes the particles. Peloids are suggested to represent faecal pellets although microbial systems also generate cell clumps by non-faecal processes. Ooid and oncoid constructions clearly record alternating processes of biofilm accumulation and aragonite encrustation. Further characteristic features of carbonate particles generated within a microbial mat are: (i) an irregular distribution ranging from isolated particles floating within the gel-like matrix to closely packed particles, (ii) the amalgamation of different particle types (e.g. peloids and ooids) in aggregate grains, (iii) the heterogeneous nature of nuclei comprising bacterial clumps, intraclasts, individual cells, cell colonies and bubbles, (iv) the enrichment of remains, casts and imprints of cells within precipitates and (v) deformation (e.g. truncated cortices) of particles.
Abstract. The morphology and geochemistry of saline lakes in the Wadi E1Natrun depression were studied. All lakes had pH values of 8.5-9.5 and a salinity from 283 to 540 g/L. The main ionic components were sulphate, chloride, carbonate and sodium. Traces of magnesium were also present. The water of the lakes is of the C1-to SO 2--C1-type. Increased C1-in Wadi E1 Natrun brines can increase metal solubility due to the formation of soluble chloro-complexes of trace elements. The metal concentrations decrease in the order: Pb > Cu > Cd > Ni > Zn > Fe > Mn. The characteristics of Wadi E1 Natrun saline lakes are compared with those from other saline lakes.
Profiles of the sources of nonmethane organic compounds (NMOCs) were developed for emissions from vehicles, petroleum fuels (gasoline, liquefied petroleum gas [LPG], and natural gas), a petroleum refinery, a smelter, and a cast iron factory in Cairo, Egypt. More than 100 hydrocarbons and oxygenated hydrocarbons were tentatively identified and quantified. Gasoline-vapor and whole-gasoline profiles could be distinguished from the other profiles by high concentrations of the C 5 and C 6 saturated hydrocarbons. The vehicle emission profile was similar to the whole-gasoline profile, with the exception of the unsaturated and aromatic hydrocarbons, which were present at higher concentrations in the vehicle emission profile. High levels of the C 2 -C 4 saturated hydrocarbons, particularly n-butane, were characteristic features of the petroleum refinery emissions. The smelter and cast iron factory emissions were similar to the refinery emissions; however, the levels of benzene and toluene were greater in the former two sources. The LPG and natural gas emissions contained high
The coastal sabkha in Ras Gemsa, Red Sea coast with its colonizing microbial mats and biofilms was investigated. The sabkha sediments consist mainly of terrigenous siliciclastic material accompanied by the development of evaporites. Halite serves as a good conduit for light and reduces the effect of intensive harmful solar radiation, which allows microbial mats to survive and flourish. The microbial mats in the evaporite–siliciclastic environments of such sabkha display distinctive sedimentary structures (microbially induced sedimentary structures), including frozen multidirected ripple marks, salt-encrusted crinkle mats, jelly roll structure, and petee structures. Scanning electron microscopy of the sediment surface colonized by cyanobacteria revealed that sand grains of the studied samples are incorporated into the biofilm by trapping and binding processes. Filamentous cyanobacteria and their EPS found in the voids in and between the particles construct a network that effectively interweaves and stabilizes the surface sediments. In advanced stages, the whole surface is covered by a spider web-like structure of biofilm, leading to a planar surface morphology. Sabkha with its chemical precipitates is a good model for potential preservation of life signatures. It is worthy to note that the available, published works on the subject of the present work are not numerous.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.