The aim of this work is to improve the oscillation results for second-order neutral differential equations with damping term. We consider the noncanonical case which always leads to two independent conditions for oscillation. We are working to improve related results by simplifying the conditions, based on taking a different approach that leads to one condition. Moreover, we obtain different forms of conditions to expand the application area. An example is also given to demonstrate the applicability and strength of the obtained conditions over known ones.
In this paper, we establish new sufficient conditions for the oscillation of solutions of a class of second-order delay differential equations with a mixed neutral term, which are under the non-canonical condition. The results obtained complement and simplify some known results in the relevant literature. Example illustrating the results is included.
In the present article, we iteratively deduce new monotonic properties of a class from the positive solutions of fourth-order delay differential equations. We discuss the non-canonical case in which there are possible decreasing positive solutions. Then, we find iterative criteria that exclude the existence of these positive decreasing solutions. Using these new criteria and based on the comparison and Riccati substitution methods, we create sufficient conditions to ensure that all solutions of the studied equation oscillate. In addition to having many applications in various scientific domains, the study of the oscillatory and non-oscillatory features of differential equation solutions is a theoretically rich field with many intriguing issues. Finally, we show the importance of the results by applying them to special cases of the studied equation.
In this work, new sufficient conditions for the oscillation of all solutions of the second-order neutral delay differential equations with the non-canonical operator are established. Using a generalized Riccati substitution, we obtained criteria that complement and extend some previous results in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.