Wet chemistry was used to produce copper oxide nanoparticles (CuO NPs). The results indicated that most nanoparticles were bacillus-shaped and relatively uniform in size (less than 30 nm). The effect of synthesized CuO NPs on wheat (Triticum aestivum L.) germination and growth parameters was studied and compared to bulk Cu. The results showed that no significant difference was obtained in germination rate among all treatments. Bulk Cu additions significantly affect the mean germination rate and mean germination time. On the contrary, germinability was significantly affected by CuO NPs additions. Seed vigor index was calculated to demonstrate the superior treatment in wheat germination parameters, and the results confirmed that 0.1 mg L−1 of CuO NPs could be successfully used to improve wheat seed germination. Moreover, the general average Cu concentrations in the plant tissue were 139 and 103 mg kg−1 dry weight for bulk and CuO NPs, respectively, indicating the dissolution behavior of CuO NPs. The addition of CuO NPs (0.1 mg L−1) promotes chlorophyll formation equal to 0.5 mg L−1 of the bulk Cu addition. This means using nanoparticles as fertilizer could reduce 80% of traditional fertilizers. Nonetheless, Cu additions in both forms (NPs and bulk) reduce root growth substantially compared to control. The effective toxic dose (EC50) for bulk Cu and CuO NPs was 0.37 mg L−1 and 0.94 mg L−1, respectively. The results indicated that approximately 2.5 times CuO NPs concentration is equal to the toxicity dose of bulk Cu due to lowered CuO NPs dissolution. Our study showed that Cu phytotoxicity is a non-nanosized effect and showed that plant-induced changes under environmentally real conditions should be considered when measuring the dissolution of CuO NPs near wheat plant roots. This study implies that using nano-CuO as a micronutrient amendment has a potential benefit rather than the soluble Cu salt for plant growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.