Protein localization data are a valuable information resource helpful in elucidating eukaryotic protein function. Here, we report the first proteome-scale analysis of protein localization within any eukaryote. Using directed topoisomerase I-mediated cloning strategies and genome-wide transposon mutagenesis, we have epitope-tagged 60% of the Saccharomyces cerevisiae proteome. By high-throughput immunolocalization of tagged gene products, we have determined the subcellular localization of 2744 yeast proteins. Extrapolating these data through a computational algorithm employing Bayesian formalism, we define the yeast localizome (the subcellular distribution of all 6100 yeast proteins). We estimate the yeast proteome to encompass ∼5100 soluble proteins and >1000 transmembrane proteins. Our results indicate that 47% of yeast proteins are cytoplasmic, 13% mitochondrial, 13% exocytic (including proteins of the endoplasmic reticulum and secretory vesicles), and 27% nuclear/nucleolar. A subset of nuclear proteins was further analyzed by immunolocalization using surface-spread preparations of meiotic chromosomes. Of these proteins, 38% were found associated with chromosomal DNA. As determined from phenotypic analyses of nuclear proteins, 34% are essential for spore viability-a percentage nearly twice as great as that observed for the proteome as a whole. In total, this study presents experimentally derived localization data for 955 proteins of previously unknown function: nearly half of all functionally uncharacterized proteins in yeast. To facilitate access to these data, we provide a searchable database featuring 2900 fluorescent micrographs at http://ygac.med.yale.edu. A global understanding of the molecular mechanisms underpinning cell biology necessitates an understanding not only of an organism's genome but also of the protein complement encoded within this genome (the proteome). In the past, data regarding an organism's proteome have typically been accumulated piecemeal through studies of a single protein or cell pathway. Genomic methodologies have altered this paradigm: a variety of approaches are now in place by which proteins may be directly analyzed on a proteome-wide scale. Chromatography-coupled mass spectrometry (Gygi et al. 1999;Washburn et al. 2001), large-scale two-hybrid screens (Uetz et al. 2000;Ito et al. 2001;Tong et al. 2002), immunoprecipitation/mass spectrometric analysis of protein complexes (Gavin et al. 2002;Ho et al. 2002), and protein microarray technologies (MacBeath and Schreiber 2000;Zhu et al. 2000Zhu et al. , 2001 are yielding unprecedented quantities of protein data. Recent genomic techniques combining microarray technologies with either chromatin immunoprecipitation (Ren et al. 2000;Iyer et al. 2001) or targeted DNA methylation (van Steensel et al. 2001) have been used to globally map binding sites of chromosomal proteins in vivo. Initiatives are even underway to automate and industrialize processes by which protein structures may be solved, potentially providing a library of structural...
We develop a probabilistic system for predicting the subcellular localization of proteins and estimating the relative population of the various compartments in yeast. Our system employs a Bayesian approach, updating a protein's probability of being in a compartment based on a diverse range of 30 features. These range from specific motifs (e.g. signal sequences or HDEL) to overall properties of a sequence (e.g. surface composition or isoelectric point) to whole-genome data (e.g. absolute mRNA expression levels or their fluctuations). The strength of our approach is the easy integration of many features, particularly the whole-genome expression data. We construct a training and testing set of ~1300 yeast proteins with an experimentally known localization from merging, filtering, and standardizing the annotation in the MIPS, Swiss-Prot and YPD databases, and we achieve 75% accuracy on individual protein predictions using this dataset. Moreover, we are able to estimate the relative protein population of the various compartments without requiring a definite localization for every protein. This approach, which is based on an analogy to formalism in quantum mechanics, gives greater accuracy in determining relative compartment populations than that obtained by simply tallying the localization predictions for individual proteins (on the yeast proteins with known localization, 92% vs. 74%). Our training and testing also highlights which of the 30 features are informative and which are redundant (19 being particularly useful). After developing our system, we apply it to the 4700 yeast proteins with currently unknown localization and estimate the relative population of the various compartments in the entire yeast genome. An unbiased prior is essential to this extrapolated estimate; for this, we use the MIPS localization catalogue, and adapt recent results on the localization of yeast proteins obtained by Snyder and colleagues using a minitransposon system. Our final localizations for all ~6000 proteins in the yeast genome are available over the web at
Persistent Rel/nuclear factor-KB (NF-KB) activity is a hallmark of many human cancers, and the Rel proteins are implicated in leukemia/lymphomagenesis but the mechanism is not fully understood. Microarray analysis to identify transformationimpacting genes regulated by NF-KB's oncogenic v-Rel and c-Rel proteins uncovered that Rel protein expression leads to transcriptional repression of key B-cell receptor (BCR) components and signaling molecules like B-cell linker (BLNK), the B-cell adaptor for phosphoinositide 3-kinase (BCAP) and immunoglobulin L light chain (IgL), and is accompanied by a block in BCR-mediated activation of extracellular signalregulated kinase, Akt, and c-Jun-NH 2 -kinase in response to anti-IgM. The BLNK and BCAP proteins were also down-regulated in lymphoid cells expressing a transformation-competent chimeric RelA/v-Rel protein, suggesting a correlation with the capacity of Rel proteins to transform lymphocytes. DNA-binding studies identified functional NF-KB-binding sites, and chromatin immunoprecipitation (ChIP) data showed binding of Rel to the endogenous blnk and bcap promoters in vivo. Importantly, restoration of either BLNK or BCAP expression strongly inhibited transformation of primary chicken lymphocytes by the potent NF-KB oncoprotein v-Rel. These findings are interesting because blnk and other BCR components and signaling molecules are down-regulated in primary mediastinal large B-cell lymphomas and Hodgkin's lymphomas, which depend on c-Rel for survival, and are consistent with the tumor suppressor function of BLNK. Overall, our results indicate that downregulation of BLNK and BCAP is an important contributing factor to the malignant transformation of lymphocytes by Rel and suggest that gene repression may be as important as transcriptional activation for Rel's transforming activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.