Abstract:Image registration is an essential step in a large number of processing chains for medical images. It is used to align two images taken at different times and from different sensors as well. In this paper, we are interested in the rigid registration and similarity measures. We describe a new registration approach, based on the normalized dissimilarity index that results from the local dissimilarity map (LDP). This LDP is obtained from distance transform applied to gray-scale images, to register, undergoing a binarization. We evaluate the performance of our method compared to the classical registration measurements such as correlation and mutual information, on a medical images database. We show that the mean squared error of our approach is more accurate in comparison to the classical registration methods to which researchers still adhere. The robustness of our proposed index is validated regarding the luminance variation and the presence of "the Pepper and Salt" as much as "the Gaussian" noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.