Extensive use of engineered nanoparticles has led to their eventual release in the environment. The present work aims to study the removal of Polyvinylpyrrolidone-coated silver nanoparticles (PVP-Ag-NPs) using
Aspergillus niger
and depict the role of exopolysaccharides in the removal process. Our results show that the majority of PVP-Ag-NPs were attached to fungal pellets. About 74% and 88% of the PVP-Ag-NPs were removed when incubated with
A. niger
pellets and exopolysaccharide-induced
A. niger
pellets, respectively. Ionized Ag decreased by 553 and 1290-fold under the same conditions as compared to stock PVP-Ag-NP. PVP-Ag-PVP resulted in an increase in reactive oxygen species (ROS) in 24 h. Results show an increase in PVP-Ag-NPs size from 28.4 to 115.9 nm for
A. niger
pellets and 160.3 nm after removal by stress-induced
A. niger
pellets and further increased to 650.1 nm for in vitro EPS removal. The obtained findings show that EPS can be used for nanoparticle removal, by increasing the net size of nanoparticles in aqueous media. This will, in turn, facilitate its removal through conventional filtration techniques commonly used at wastewater treatment plants.
Supplementary Information
The online version contains supplementary material available at 10.1007/s11356-021-18018-9.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.