This work presents a series of highly-accurate excited-state properties obtained using high-order coupledcluster (CC) calculations performed with a series of diffuse containing basis sets, as well as extensive comparisons with experimental values. Indeed, we have computed both the main ground-to-excited transition property, the oscillator strength, as well as the ground-and excited-state dipole moments, considering thirteen small molecules (hydridoboron, hydrogen chloride, water, hydrogen sulfide, boron fluoride, carbon monoxide, dinitrogen, ethylene, formaldehyde, thioformaldehyde, nitroxyl, fluorocarbene, and silylidene). We systematically include corrections up to the quintuple (CCSDTQP) in the CC expansion and extrapolate to the complete basis set limit. When comparisons with experimental measurements are possible, that is, when a number of consistent experimental data can be found, theory typically provides values falling within the experimental error bar for the excited-state properties. Besides completing our previous studies focussed on transition energies (
We present an effective computational protocol (cLR 2 ) to describe both solvatochromism and fluorosolvatochromism. This protocol, which couples the polarizable continuum model to time-dependent density functional theory, simultaneously accounts for both linear-response and state-specific solvation effects. A series of test cases, including solvatochromic and fluorosolvatochromic compounds and excited-state intramolecular proton transfers, are used to highlight that cLR 2 is especially beneficial for modeling bright excitations possessing a significant charge-transfer character, as well as cases in which an accurate balance between states of various polarities should be restored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.