Generating high-quality data (e.g. images or video) is one of the most exciting and challenging frontiers in unsupervised machine learning. Utilizing quantum computers in such tasks to potentially enhance conventional machine learning algorithms has emerged as a promising application, but poses big challenges due to the limited number of qubits and the level of gate noise in available devices. In this work, we provide the first practical and experimental implementation of a quantum-classical generative algorithm capable of generating high-resolution images of handwritten digits with state-of-the-art gate-based quantum computers. In our quantum-assisted machine learning framework, we implement a quantum-circuit based generative model to learn and sample the prior distribution of a Generative Adversarial Network. We introduce a multi-basis technique which leverages the unique possibility of measuring quantum states in different bases, hence enhancing the expressibility of the prior distribution. We train this hybrid algorithm on an ion-trap device based on 171 Yb + ion qubits to generate high-quality images and quantitatively outperform comparable classical Generative Adversarial Networks trained on the popular MNIST data set for handwritten digits.
In the near-term, hybrid quantum-classical algorithms hold great potential for outperforming classical approaches. Understanding how these two computing paradigms work in tandem is critical for identifying areas where such hybrid algorithms could provide a quantum advantage. In this work, we study a QAOA-based quantum optimization approach by implementing the Variational Quantum Factoring (VQF) algorithm. We execute experimental demonstrations using a superconducting quantum processor, and investigate the trade off between quantum resources (number of qubits and circuit depth) and the probability that a given biprime is successfully factored. In our experiments, the integers 1099551473989, 3127, and 6557 are factored with 3, 4, and 5 qubits, respectively, using a QAOA ansatz with up to 8 layers and we are able to identify the optimal number of circuit layers for a given instance to maximize success probability. Furthermore, we demonstrate the impact of different noise sources on the performance of QAOA, and reveal the coherent error caused by the residual ZZ-coupling between qubits as a dominant source of error in a near-term superconducting quantum processor.
The performance of error correction protocols are necessary for understanding the operation of potential quantum computers, but this requires physical error models that can be simulated efficiently with classical computers. The Gottesmann-Knill theorem guarantees a class of such error models. Of these, one of the simplest is the Pauli twirling approximation (PTA), which is obtained by twirling an arbitrary completely positive error channel over the Pauli basis, resulting in a Pauli channel. In this work, we test the PTA’s accuracy at predicting the logical error rate by simulating the 5-qubit code using a 9-qubit circuit with realistic decoherence and unitary gate errors. We find evidence for good agreement with exact simulation, with the PTA overestimating the logical error rate by a factor of 2 to 3. Our results suggest that the PTA is a reliable predictor of the logical error rate, at least for low-distance codes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.