Essential oils protect plants, and due to their natural origin, there is much interest in using them as antimicrobial agents. The purpose of this study was to determine the phytochemical constituents of ginger essential oil (GEO), antimicrobial activity, and mode of action against Burkholderia glumae (Bg). In addition, the volatile active compounds (AIs) were studied using GC-MS, FTIR, and Raman spectroscopy. A total of 45 phytochemical components were detected and the most prevalent bioactive compounds were Geranial, 1,8-Cineole, Neral, Camphene, α-Zingiberene, and α-Farnesene. Furthermore, it was found that the most dominant terpenes in GEO were monoterpenes. The diameter zone of inhibition values varied from 7.1 to 15 mm depending on the concentration tested. In addition, the MIC and MBC values were 112.5 µL/mL. Faster killing time and lower membrane potential were observed in 1xMIC treatment compared to 0.5xMIC treatment, whereas the control had the maximum values. From observations of various images, it was concluded that the mode of action of GEO affected the cytoplasmic membrane, causing it to lose its integrity and increase its permeability. Therefore, the antibacterial study and mechanism of action revealed that GEO is very effective in suppressing the growth of B. glumae.
Effect of leaf aqueous extracts of Khaya senegalensis were determined on disease causing fungi. This work aimed to determine the antifungal effect of Khaya senegalensis leaf extract on the growth of some selected fungi. In this study, the phytopathogenic fungi isolated from the spoiled bread are identified based on morphological and cultural characters. The identification of the fungi was confirmed by pathogenicity tests, the organisms were found to be Mucor spp. and Rhizopus spp. Leaf aqueous extracts of different concentrations (100, 200, 300, 400 and 500 mg mL-1) of Khaya senegalensis were added to the growth media prior to inoculation. The aqueous extracts have inhibited the mycelial growth of the fungi, and this effect gradually increased with an increase in the concentration. It could be emphatically concluded that the tested plant extract can effectively control fungi affecting. This makes it potential biofungicide for the management of fungi associated with bread as it is cheap and environmentally safe due to their fungicidal and fungitoxic ability.
Heat stress or global warming is a continuous temperature fluctuation that affects the environment and damage plant tissues because of the hormonal imbalances in plants. Yield losses resulting from heat stress are a major threat to global food security. Plant growth-promoting bacteria (PGPB) may be utilized to lessen this loss in yield. PGPB containing aminocyclopropane-1-carboxylic acid (ACC) deaminase activity can enhance plant growth that various abiotic stresses inhibit. This work was conducted to evaluate the effect of ACC deaminase and exopolysaccharides producing bacteria on maize plants grown under heat stress. The stressed plants were kept at 45 °C, while non-stressed plants were grown at a temperature of 28 - 35 °C. In 45 days of the growing period under heat stress, the plant growth and activities were decreased, however, in the presence of PGPB (isolated from soil and plant tissues in Muzaffagarh, Pakistan) containing ACC deaminase activity, the plant activities and biomass were increased compared to their respective control. The ACC deaminase-producing bacteria played a significant role by enhancing the physiological activities of the plants like chlorophyll a and b, carotenoid pigments, and proline content. Enzymatic activities like superoxide dismutase (81 %), peroxidase (57.8 %), and catalase (50.27 %) were increased. The relative water content of the maize plants was increased in Treatment one (T1) with 300, and 200 % for non-heat and heat, respectively, while the control was having 220, and 200 % for non-heat and heat, respectively. Soluble sugar content was improved with T1 having the highest values (4,000 and 5,700 g/mol) for heat and non-heat, respectively. The control was having 900, and 2300 g/mol for heat and non-heat, respectively. The application of ACC deaminase-producing bacteria on maize can help to overcome the adverse effects of heat stress and help the plant to survive under stress condition. HIGHLIGHTS Heat stress is a continuous temperature fluctuation that affects the environment and damage plant tissues because of the hormonal imbalances in plants, and yield losses resulting from heat stress are a major threat to global food security This research work was carried out to assess the effect of ACC deaminase and exopolysaccharides producing bacteria on maize plants grown under heat stress The use of ACC deaminase-producing bacteria on maize can help to overcome the adverse effects of heat stress and help the plant to survive under stress condition GRAPHICAL ABSTRACT
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.