It is very challenging to estimate the accurate heart rate/beat during intense physical activities due to corruption of motion artifacts (MAs). However, it is difficult to reconstruct a clean signal and extract heart rate/beat from contaminated photoplethysmography (PPG) signals. It was also observed that various algorithms have been developed for use in the detection of heart rates during physical activities by reconstructing the contaminated PPG signals to clean PPG signals. Against this backdrop, an overview of the various algorithms was conducted with their results from various works. These results are such that the motion-tolerant adaptive algorithm indicated high agreement and high correlation of more than 0.98 for heart rate (HR) and 0.7 for pulse oxygen saturation (SpO2) extraction between measurements by reference sensors and the algorithm. In addition, the distortion rates were reduced from 52.3% to 3.53%, at frequencies between 1 Hz and 2.5 Hz, when the two-dimensional active noise cancellation algorithm was applied representing daily motion such as walking and jogging. The correlation coefficient between the power spectral densities of the reference and reconstructed heart-rate time series was found to be 0.98, which showed that the spectral filter algorithm for motion artifacts and heart-rate reconstruction (SpaMA) method has a potential for PPG-based HR monitoring in wearable devices for fitness tracking and health monitoring during intense physical activities. The experimental result of the single-notch filter and ensemble empirical mode decomposition (NFEEMD) algorithm using the Pearson correlation was 0.992 which illustrated that the NFEEMD algorithm is not only suitable for HR estimation during continuous activities but also for intense physical activities with acceleration. Other algorithms suitable for HR estimation during physical activities include the time–frequency spectrum for the detection of motion artifacts (TifMA) algorithm, novel time-varying spectral filtering algorithm, noise-robust heart-rate estimation algorithm, real-time QRS detection algorithm, and many other algorithms in this regard.
A low cost multichannel temperature data logger was designed and fabricated in this study. The design was done using Max6675 temperature sensors and linear monolithic (LMs) temperature sensors. This data logger is an electronic device that records data over time based on microcontroller. The utilization of data logger in this work is to accomplish the task of monitoring the temperature measurement of the 160Wpeak hybrid photovoltaic/thermal (PV/T) flat plate solar air heater. This data logger is just customized for this equipment—the hybrid photovoltaic/thermal solar air heater. The developed prototype was powered both internally and externally. It equally has a retrievable memory card module. The time series of the sensor was set at one minute interval. The trend of the temperature flow pattern measured from the hybrid photovoltaic/thermal (PV/T) flat plate solar air heater was in consonance with the solar radiation flow pattern. This indicates that the peaks of the temperature plots fall at the peaks of the plots of solar radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.