Experimental protocols for cancer immunotherapy include the utilization of autologous monocyte-derived dendritic cells (moDC) pulsed with tumor antigens. However, disease can alter the characteristics of monocyte precursors and some patients have increased numbers (up to 40%) of the minor CD16(+) monocyte subpopulation, which in healthy individuals represent 10% of blood monocytes. At the present, the capacity of CD16(+) monocytes to differentiate into DC has not been evaluated. Here, we investigated the ability of CD16(+) monocytes cultured with granulocyte- macrophage colony-stimulating factor, IL-4 and tumor necrosis factor-alpha to generate DC in vitro, and we compared them to DC derived from regular CD16(-) monocytes. Both monocyte subsets gave rise to cells with DC characteristics. They internalized soluble and particulate antigens similarly, and both were able to stimulate T cell proliferation in autologous and allogeneic cultures. Nevertheless, CD16(+) moDC expressed higher levels of CD86, CD11a and CD11c, and showed lower expression of CD1a and CD32 compared to CD16(-) moDC. Lipopolysaccharide-stimulated CD16(-) moDC expressed increased levels of IL-12 p40 mRNA and secreted greater amounts of IL-12 p70 than CD16(+) moDC, whereas levels of transforming growth factor-beta1 mRNA were higher on CD16(+) moDC. Moreover, CD4(+) T cells stimulated with CD16(+) moDC secreted increased amounts of IL-4 compared to those stimulated by CD16(-) moDC. These data demonstrate that both moDC are not equivalent, suggesting either that they reach different stages of maturation during the culture or that the starting monocytes belong to cell lineages with distinct differentiation capabilities.
We previously demonstrated that tumor necrosis factor (TNF)-alpha-matured CD16- and CD16+ human monocyte-derived dendritic cells (16-mDC and 16+mDC) differentially stimulate naive CD4+ lymphocytes by inducing Th1- and Th2-like responses, respectively. Here, we further characterized the role of different DC maturation factors on Th polarization. Immature 16+mDC and 16-mDC (iDC) obtained by culture of purified monocytes with GM-CSF and IL-4 were maturated with (i) Toll-like receptor (TLR) ligands [lipopolysaccharide (LPS)], (ii) lymphocyte-derived (soluble CD40 ligand, IFN-gamma) and (iii) endogenous inflammatory stimuli [TNF-alpha, prostaglandin (PG)E2]. After activation with these stimuli, DC secrete IL-12 only in presence of LPS, and 16+mDC produced lower amounts of IL-12 and IL-10 than 16-mDC. Allogeneic CD4+CD45RO- lymphocytes co-cultured with 16+mDC secreted higher levels of IL-4 and IL-10 than those co-cultured with 16-mDC, regardless of the maturation stimuli. Results were similar when DC were activated with TLR-2 or TLR-3 ligands. The higher induction of IL-4 by 16+mDC was primarily dependent on IL-12, IL-4 and IL-10. IFN-gamma production by CD4+ T cells was similar with all the conditions except with LPS-16+mDC, which induced reduced amounts of this cytokine. Those differences were totally eliminated by neutralization of IL-12, IL-4 or IL-10. Finally, 16-mDC could reverse the Th2 phenotype of already committed lymphocytes toward a Th1 pattern in short-term cultures, whereas 16+mDC had less ability to skew this phenotype. These results indicate that 16+mDC elicit superior Th2 responses independently of the maturation factors that they received, and suggest that they could represent an important population of regulatory DC.
Summary Dendritic cells (DC) are powerful inducers of primary T‐cell responses, but their role in secondary responses has not been extensively analysed. Here, we address the role of two DC subsets derived from human CD16+ (16+ mDC) or CD16– (16– mDC) monocytes on the reactivation of memory responses. CD4+ CD45RA– memory T cells were obtained from adult blood donors, and central (TCM) and effector (TEM) memory T cells were isolated by fluorescence‐activated cell sorting with anti‐CCR7 antibodies. The 16+ mDC and 16– mDC were cocultured with autologous lymphocytes, either unpulsed or loaded with purified protein derivatives of Mycobacterium tuberculosis (PPD) or tetanus toxoid (TT), and were analysed for up to 8 days. Over a range of doses, 16+ mDC drove stronger T‐cell proliferative responses against both antigens. Overall, antigen‐specific memory cells tended to acquire a phenotype of TEM at later time‐points in the culture, whereas cells that had completed fewer cycles of division were similar to TCM. The 16+ mDC induced higher rates of proliferation on both TCM and TEM lymphocytes than 16– mDC. This phenomenon was not related to the ability of both DC to induce CD25 expression on T cells, to lower secretion of interleukin‐2, or to raise production of interleukin‐10 during T‐cell/16– mDC cocultures. The induction of TCM effector capacity in terms of interferon‐γ production was faster and more pronounced with 16+ mDC, whereas both DC had similar abilities with TEM. In conclusion, these data might reveal new potentials in vaccination protocols with 16+ mDC aimed at inducing strong responses on central memory T cells.
The peripheral repertoire of CD4 1 T lymphocytes contains autoreactive cells that remain tolerant through several mechanisms. However, nonspecific CD41 T cells can be activated in physiological conditions as in the course of an ongoing immune response, and their outcome is not yet fully understood. Here, we investigate the fate of human naive CD4 1 lymphocytes activated by dendritic cells (DCs) presenting endogenous self-peptides in comparison with lymphocytes involved in alloresponses. We generated memory cells (Tmem) from primary effectors activated with mature autologous DCs plus interleukin (IL)-2 (Tm auto ), simulating the circumstances of an active immune response, or allogeneic DCs (Tm allo ). Tmem were generated from effector cells that were rested in the absence of antigenic stimuli, with or without IL-7. Tmem were less activated than effectors (demonstrated by CD25 downregulation) particularly with IL-7, suggesting that this cytokine may favour the transition to quiescence. Tm auto and Tm allo showed an effector memory phenotype, and responded similarly to polyclonal and antigen-specific stimuli. Biochemically, IL-7-treated Tm allo were closely related to conventional memory lymphocytes based on Erk-1/2 activation, whereas Tm auto were more similar to effectors. Autologous effectors exhibited lower responses to IL-7 than allogeneic cells, which were reflected in their reduced proliferation and higher cell death. This was not related to IL-7 receptor expression but rather to signalling deficiencies, according to STAT5 activation These results suggest that ineffective responses to IL-7 could impair the transition to memory cells of naive CD41 T lymphocytes recognizing self-peptides in the setting of strong costimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.