Gas-path diagnostics is an essential part of gas turbine (GT) condition-based maintenance (CBM). There exists extensive literature on GT gas-path diagnostics and a variety of methods have been introduced. The fundamental limitations of the conventional methods such as the inability to deal with the nonlinear engine behavior, measurement uncertainty, simultaneous faults, and the limited number of sensors available remain the driving force for exploring more advanced techniques. This review aims to provide a critical survey of the existing literature produced in the area over the past few decades. In the first section, the issue of GT degradation is addressed, aiming to identify the type of physical faults that degrade a gas turbine performance, which gas-path faults contribute more significantly to the overall performance loss, and which specific components often encounter these faults. A brief overview is then given about the inconsistencies in the literature on gas-path diagnostics followed by a discussion of the various challenges against successful gas-path diagnostics and the major desirable characteristics that an advanced fault diagnostic technique should ideally possess. At this point, the available fault diagnostic methods are thoroughly reviewed, and their strengths and weaknesses summarized. Artificial intelligence (AI) based and hybrid diagnostic methods have received a great deal of attention due to their promising potentials to address the above-mentioned limitations along with providing accurate diagnostic results. Moreover, the available validation techniques that system developers used in the past to evaluate the performance of their proposed diagnostic algorithms are discussed. Finally, concluding remarks and recommendations for further investigations are provided.
An effective and reliable gas path diagnostic method that could be used to detect, isolate, and identify gas turbine degradations is crucial in a gas turbine condition-based maintenance. In this paper, we proposed a new combined technique of artificial neural network and support vector machine for a two-shaft industrial gas turbine engine gas path diagnostics. To this end, an autoassociative neural network is used as a preprocessor to minimize noise and generate necessary features, a nested support vector machine to classify gas path faults, and a multilayer perceptron to assess the magnitude of the faults. The necessary data to train and test the method are obtained from a performance model of the case engine under steady-state operating conditions. The test results indicate that the proposed method can diagnose both single- and multiple-component faults successfully and shows a clear advantage over some other methods in terms of multiple fault diagnosis. Moreover, 5-8 sets of measurements have been used to assess the prediction accuracy, and only a 2.3% difference was observed. This result indicates that the proposed method can be used for multiple fault diagnosis of gas turbines with limited measurements.
Since aeronautic transportation is responsible for a rising share of polluting emissions, it is of primary importance to minimize the fuel consumption any time during operations. From this perspective, continuous monitoring of engine performance is essential to implement proper corrective actions and avoid excessive fuel consumption due to engine deterioration. This requires, however, automated systems for diagnostics and decision support, which should be able to handle large amounts of data and ensure reliability in all the multiple conditions the engines of a fleet can be found in. In particular, the proposed solution should be robust to engine-to-engine deviations and different sensors availability scenarios. In this paper, a probabilistic Bayesian network for fault detection and identification is applied to a fleet of engines, simulated by an adaptive performance model. The combination of the performance model and the Bayesian network is also studied and compared to the probabilistic model only. The benefit in the suggested hybrid approach is identified as up to 50% higher accuracy. Sensors unavailability due to manufacturing constraints or sensor faults reduce the accuracy of the physics-based method, whereas the Bayesian model is less affected.
The rapid advancement of machine-learning techniques has played a significant role in the evolution of engine health management technology. In the last decade, deep-learning methods have received a great deal of attention in many application domains, including object recognition and computer vision. Recently, there has been a rapid rise in the use of convolutional neural networks for rotating machinery diagnostics inspired by their powerful feature learning and classification capability. However, the application in the field of gas turbine diagnostics is still limited. This paper presents a gas turbine fault detection and isolation method using modular convolutional neural networks preceded by a physics-driven performance-trend-monitoring system. The trend-monitoring system was employed to capture performance changes due to degradation, establish a new baseline when it is needed, and generatefault signatures. The fault detection and isolation system was trained to step-by-step detect and classify gas path faults to the component level using fault signatures obtained from the physics part. The performance of the method proposed was evaluated based on different fault scenarios for a three-shaft turbofan engine, under significant measurement noise to ensure model robustness. Two comparative assessments were also carried out: with a single convolutional-neural-network-architecture-based fault classification method and with a deep long short-term memory-assisted fault detection and isolation method. The results obtained revealed the performance of the proposed method to detect and isolate multiple gas path faults with over 96% accuracy. Moreover, sharing diagnostic tasks with modular architectures is seen as relevant to significantly enhance diagnostic accuracy.
Abstract. In this competitive business world one way to increase profitability of a power production unit is to reduce the operation and maintenance expenses. This is possible if the gas turbine availability and reliability is improved using the appropriate maintenance action at the right time. In that case, fault diagnostics is very critical and effective and advanced methods are essential. Gas turbine diagnostics has been studied for the past six decades and several methods are introduced. This paper aims to review and summarise the published literature on gas path diagnostics, giving more emphasis to the recent developments, and identify advantages and limitations of the methods so that beginners in diagnostics can easily be introduced. Towards this end, this paper, identifies various diagnostic methods and point out their pros and cons. Finally, the paper concludes the review along with some recommended future works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.