In this paper we extend the coupled contraction mapping theorem proved in partially ordered metric spaces by Gnana Bhaskar and Lakshmikantham (Nonlinear Anal. TMA 65:1379-1393) to a coupled coincidence point result for a pair of compatible mappings. A control function has been used in our theorem. The mappings are assumed to satisfy a weak contractive inequality. Our theorem improves the results of Harjani et al. (Nonlinear Anal. TMA 74:1749-1760. The result we have established is illustrated with an example which also shows that the improvement is actual.
Tripled fixed points are extensions of the idea of coupled fixed points introduced in a recent paper by Berinde and Borcut, 2011. Here using a separate methodology we extend this result to a triple coincidence point theorem in partially ordered metric spaces. We have defined several concepts pertaining to our results. The main results have several corollaries and an illustrative example. The example shows that the extension proved here is actual and also the main theorem properly contains all its corollaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.