<p>Computational time is high for Multilayer perceptron (MLP) trained with back propagation learning algorithm (BP) also the complexity of the network increases with the number of layers and number of nodes in layers. In contrast to MLP, functional link artificial neural network (FLANN) has less architectural complexity, easier to train, and gives better result in the classification problems. The paper proposed an evolutionary functional link artificial neural network (EFLANN) using genetic algorithm (GA) by eliminating features having little or no predictive information. Particle swarm optimization (PSO) is used as learning tool for solving the problem of classification in data mining. EFLANN overcomes the non-linearity nature of problems by using the functionally expanded selected features, which is commonly encountered in single layer neural networks. The model is empirically compared to MLP, FLANN gradient descent learning algorithm, Radial Basis Function (RBF) and Hybrid Functional Link Neural Network (HFLANN) . The results proved that the proposed model outperforms the other models.</p>
In this paper, a novel heuristic structure optimization technique is proposed for Neural Network using Adaptive PSO & GA on Boolean identities to improve the performance of Artificial Neural Network (ANN). The selection of the optimal number of hidden layers and nodes has a significant impact on the performance of a neural network, is decided in an adhoc manner. The optimization of architecture and weights of neural network is a complex task. In this regard the use of evolutionary techniques based on Adaptive Particle Swarm Optimization (APSO) & Adaptive Genetic Algorithm (AGA) is used for selecting an optimal number of hidden layers and nodes of the neural controller, for better performance and low training errors through Boolean identities. The hidden nodes are adapted through the generation until they reach the optimal number. The Boolean operators such as AND, OR, XOR have been used for performance analysis of this technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.