The photolyses of phosphate-buffered (pH 7) air- and nitrogen-saturated solutions containing the water-soluble quinones, 1,4-benzoquinone (BQ), 2-methyl-1,4-benzoquinone (MBQ), sodium 1,4-naphthoquinone-2-sulfonate (NQ2S), 9,10-anthraquinone-2-sulfonate (AQ2S) or 9,10-anthraquinone-1,5-disulfonate (AQDS), and the spin trap 5,5-dimethylpyrroline-1-oxide (DMPO) produce a DMPO-OH adduct. Electron paramagnetic resonance spectroscopy of the photolyzed samples in 17O-enriched water demonstrates that this adduct derives almost exclusively from water. With the exception of BQ, quantum yields for the formation of DMPO-OH are larger in air than in nitrogen-saturated samples, thus supporting the idea of the formation of air-oxidized intermediates that enhance the DMPO hydroxylation reaction rate. Evidence has been obtained which suggests that BQ and MBQ, but not AQDS, are able to photooxidize water, with the consequent production of the free OH radical.
The employment of enzymes as catalysts within organic media has traditionally been hampered by the reduced enzymatic activities when compared to catalysis in aqueous solution. Although several complementary hypotheses have provided mechanistic insights into the causes of diminished activity, further development of biocatalysts would greatly benefit from effective chemical strategies (e.g., PEGylation) to ameliorate this event. Herein we explore the effects of altering the solvent composition from aqueous buffer to 1,4-dioxane on structural, dynamical, and catalytic properties of the model enzyme subtilisin Carlsberg (SBc). Furthermore, we also investigate the effects of dissolving the enzyme in 1,4-dioxane through chemical modification with poly(ethylene)-glycol (PEG, M(W) = 20 kDa) on these enzyme properties. In 1,4-dioxane a 10(4)-fold decrease in the enzyme's catalytic activity was observed for the hydrolysis reaction of vinyl butyrate with D(2)O and a 50% decrease in enzyme structural dynamics as evidenced by reduced amide H/D exchange kinetics occurred. Attaching increasing amounts of PEG to the enzyme reversed some of the activity loss. Evaluation of the structural dynamic behavior of the PEGylated enzyme within the organic solvent revealed an increase in structural dynamics at increased PEGylation. Correlation analysis between the catalytic and structural dynamic parameters revealed that the enzyme's catalytic activity and enantioselectivity depended on the changes in protein structural dynamics within 1,4-dioxane. These results demonstrate the importance of protein structural dynamics towards regulating the catalytic behavior of enzymes within organic media.
In this study we explored the efficiency of the additive methyl-beta-cyclodextrin (M beta CD) to enhance the activity and enantioselectivity of the serine protease subtilisin Carlsberg in organic solvents. These two parameters, measured for different transesterification reactions and in several solvents, are compared with results obtained by using two additional preparations of the same enzyme: lyophilized powder and cross-linked enzyme crystals (CLEC). The results suggest that co-lyophilization of subtilisin with M beta CD preserves the enzyme's active site tertiary structure rendering a highly active and enantioselective catalyst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.