To understand the possible mechanism of nitric oxide (NO)-mediated cytotoxicity, we investigated the effect of NO on the endogenous antioxidant enzymes (AOEs) catalase, glutathione peroxidase (GPX), and CuZn-and Mn-superoxide dismutases (SODs) in rat C6 glial cells underconditions in which these cells expressed oligodendrocyte-like properties as evidenced by the expression of 2 ',3'-cyclic-nucleotide 3'-phosphohydrolase. The 24-h treatment with S-nitroso-N-acetylpenicillamine (SNAP), a NO donor, decreased the activities and the protein levels of catalase, GPX, and Mn-SOD in a dosedependent manner. Alternatively, the activity and the protein level of CuZn-SOD were increased. 2-Phenyl-4,4, 5,5-tetramethylimidazoline-1 -oxyl-3-oxide (PTIO), a NO scavenger, blocked the effect of SNAP. Moreover, the treatment of C6 cells with sodium nitroprusside, another NO donor, or with a combination of lipopolysaccharide (LPS) and interferon-y (IFN-y), which induce excessive production of NO, also significantly modulated the AOE activities in a manner similar to that seen with SNAP treatment. The compounds/enzymes that inhibit the production of NO (e.g., N-nitro-L-arginine methyl ester hydrochloride, arginase, and PTIO) blocked the effects of LPS and IFN-y on the activities of AOEs. Treatment with SNAP and a combination of LPS and IFN-y also modulated the mRNA levels of AOEs, parallel to the changes in their protein levels and activities, except for Mn-SOD where the combination of LPS and IFN-y markedly stimulated the mRNA expression. In spite of the stimulation of mRNA level, LPS and IFN-y significantly inhibited the activity of Mn-SOD within the first 24 h of incubation; however, Mn-SOD activity gradually increased with the increase in time of incubation. These results suggest that alterations in the status of AOEs by NO may be the basis of NO-induced cytotoxicity in disease states associated with excessive NO production.