Prosthetic devices for hand difference have advanced considerably in recent years, to the point where the mechanical dexterity of a state-of-the-art prosthetic hand approaches that of the natural hand. Control options for users, however, have not kept pace, meaning that the new devices are not used to their full potential. Promising developments in control technology reported in the literature have met with limited commercial and clinical success. We have previously described a biomechanical model of the hand that could be used for prosthesis control. In this study, we report on three key elements of the biomechanical simulations relevant to prosthesis control: we show the performance of the model in replicating recorded hand kinematics and find average correlations of 0.89 between modelled and recorded motions; we show that the computational performance of the simulations is fast enough to achieve real-time control with a robotic hand in the loop; and we describe the use of the model for controlling object gripping. Despite some limitations in accessing sufficient driving signals, the model performance shows promise as a controller for prosthetic hands when driven with recorded EMG signals. We identify areas for future work to address these limitations.
Over the last few years, the Leap Motion Controller™(LMC) has been increasingly used in clinical environments to track hand, wrist and forearm positions as an alternative to the gold-standard motion capture systems. Since the LMC is marker-less, portable, easy-to-use and low-cost, it is rapidly being adopted in healthcare services. This paper demonstrates the comparison of finger kinematic data between the LMC and a gold-standard marker-based motion capture system, Qualisys Track Manager (QTM). Both systems were time synchronised, and the participants performed abduction/adduction of the thumb and flexion/extension movements of all fingers. The LMC and QTM were compared in both static measuring finger segment lengths and dynamic flexion movements of all fingers. A Bland–Altman plot was used to demonstrate the performance of the LMC versus QTM with Pearson’s correlation (r) to demonstrate trends in the data. Only the proximal interphalangeal joint (PIP) joint of the middle and ring finger during flexion/extension demonstrated acceptable agreement (r = 0.9062; r = 0.8978), but with a high mean bias. In conclusion, the study shows that currently, the LMC is not suitable to replace gold-standard motion capture systems in clinical settings. Further studies should be conducted to validate the performance of the LMC as it is updated and upgraded.
Prosthetic devices for hand difference have advanced considerably in recent years, to the point where the mechanical dexterity of a state-of-the-art prosthetic hand approaches that of the natural hand. Control options for users, however, have not kept pace, meaning that the new devices are not used to their full potential. Promising developments in control technology reported in the literature have met with limited commercial and clinical success. We have previously described a biomechanical model of the hand that could be used for prosthesis control. In this study, we report on three key elements of the biomechanical simulations relevant to prosthesis control: we show the performance of the model in replicating recorded hand kinematics and find average correlations of 0.89 between modelled and recorded motions; we show that the computational performance of the simulations is fast enough to achieve real-time control with a robotic hand in the loop; and we describe the use of the model for controlling object gripping. Despite some limitations in accessing sufficient driving signals, the model performance shows promise as a controller for prosthetic hands when driven with recorded EMG signals. We identify areas for future work to address these limitations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.