Despite major progress in dissecting the molecular pathways that control DNA methylation patterns in plants, little is known about the mechanisms that shape plant methylomes over evolutionary time. Drawing on recent intra- and interspecific epigenomic studies, we show that methylome evolution over long timescales is largely a byproduct of genomic changes. By contrast, methylome evolution over short timescales appears to be driven mainly by spontaneous epimutational events. We argue that novel methods based on analyses of the methylation site frequency spectrum (mSFS) of natural populations can provide deeper insights into the evolutionary forces that act at each timescale.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-016-1127-5) contains supplementary material, which is available to authorized users.
The recent taxonomic classification of beech in Europe considers existence of one species (Fagus sylvatica L.) with two subspecies: F. sylvatica ssp. sylvatica and F. sylvatica ssp. orientalis. Four beech populations growing on the Greek part of the Rodopi Mountains were studied using morphological traits as well as DNA molecular markers (AFLPs and chloroplast DNA SSR). The aim of the study was to describe the variation patterns of beech in the Rodopi Mountains and to test the hypothesis of possible introgression between the beech subspecies' sylvatica and orientalis in this area. Both morphological traits and gene markers revealed a possible influence of F. orientalis on the east side of Rodopi and at the low elevations, while characters resembling F. sylvatica were observed mainly on the western part of the mountains and in higher altitudes. There was a clinal increase of genetic diversity from the west to the east, reaching a level firstly reported for beech populations. These results can be explained either by the existence of a main refugial area for beech during the last glaciation or by the occurrence of a recent hybridization among the subspecies, which were spatially isolated during the last glaciation and came into reproductive contact during their postglacial remigration. These two scenarios are not necessarily mutually exclusive.
SummaryNorway spruce is a boreal forest tree species of significant ecological and economic importance. Hence there is a strong imperative to dissect the genetics underlying important wood quality traits in the species. We performed a functional genome‐wide association study (GWAS) of 17 wood traits in Norway spruce using 178 101 single nucleotide polymorphisms (SNPs) generated from exome genotyping of 517 mother trees. The wood traits were defined using functional modelling of wood properties across annual growth rings. We applied a Least Absolute Shrinkage and Selection Operator (LASSO‐based) association mapping method using a functional multilocus mapping approach that utilizes latent traits, with a stability selection probability method as the hypothesis testing approach to determine a significant quantitative trait locus. The analysis provided 52 significant SNPs from 39 candidate genes, including genes previously implicated in wood formation and tree growth in spruce and other species. Our study represents a multilocus GWAS for complex wood traits in Norway spruce. The results advance our understanding of the genetics influencing wood traits and identifies candidate genes for future functional studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.