Phosphodiesterases (PDEs) regulate cyclic nucleotide levels. Increased cyclic AMP (cAMP) signaling has been associated with PRKAR1A or GNAS mutations and leads to adrenocortical tumors and Cushing syndrome. We investigated the genetic source of Cushing syndrome in individuals with adrenocortical hyperplasia that was not caused by known defects. We performed genome-wide SNP genotyping, including the adrenocortical tumor DNA. The region with the highest probability to harbor a susceptibility gene by loss of heterozygosity (LOH) and other analyses was 2q31-2q35. We identified mutations disrupting the expression of the PDE11A isoform-4 gene (PDE11A) in three kindreds. Tumor tissues showed 2q31-2q35 LOH, decreased protein expression and high cyclic nucleotide levels and cAMP-responsive element binding protein (CREB) phosphorylation. PDE11A codes for a dual-specificity PDE that is expressed in adrenal cortex and is partially inhibited by tadalafil and other PDE inhibitors; its germline inactivation is associated with adrenocortical hyperplasia, suggesting another means by which dysregulation of cAMP signaling causes endocrine tumors.
Adrenocortical cancer (ACC) is a rare tumor with a poor prognosis. By contrast, benign adrenocortical tumors are frequent, underlying the importance of a correct diagnosis of malignancy of such tumors. ACC can be diagnosed by the investigation of endocrine signs of steroid excess, symptoms due to tumor growth or an adrenal incidentaloma. Hormonal investigations demonstrate in most ACC steroid oversecretion, the dominant characteristics being a co-secretion of cortisol and androgens. Imaging by CT-scan or MRI shows a large heterogeneous tumor with a low fat content. Careful pathological investigation with the assessment of the Weiss score is important for the diagnosis of malignancy. Molecular markers can also be helpful and in the future might be important for prognosis. Tumors localized to the adrenal gland (McFarlane stages 1 and 2) have a better outcome than invasive and metastatic tumors (stages 3 and 4). Tumor removal by a specialized team is crucial for treatment and should always aim at complete removal. In patients with metastatic or progressive disease, medical treatment is started with mitotane that requires a close monitoring of its blood level. Surgery is indicated when possible for local recurrence but also in some cases of metastasis. Local treatment (radiofrequency, chemoembolization, and radiation therapy) can have some indications for metastatic disease. In patients with disease progression cytotoxic chemotherapy can be used. Despite the best care, the overall prognosis of ACC is poor with a 5-year survival rate below 30% in most series. Therefore, progress in the understanding of the pathophysiology of ACC is important. Despite the rarity of ACC, significant advances have been made in the understanding of its pathogenesis the last decade. These progresses came mainly from the study of the genetics of ACC, both at the germline level in rare familial diseases, and at the somatic level by the study of molecular alterations in sporadic tumors. These advances underline the importance of genetic alterations in ACC development and point-out to various chromosomal regions (2, 11p15, 11q, 17p13) and genes (IGF-II, p53, b-catenin, ACTH receptor). This review will summarize these advances as well as the current clinical management of ACC.
Adrenocortical carcinoma (ACC) is a rare disease with an overall poor but heterogeneous prognosis. This heterogeneity could reflect different mechanisms of tumor development. Gene expression profiling by transcriptome analysis led to ACC being divided into two groups of tumors with very different outcomes. Somatic inactivating mutations of the tumor suppressor gene TP53 and activating mutations of the proto-oncogene β-catenin (CTNNB1) are the most frequent mutations identified in ACC. This study investigates the correlation between p53 and β-catenin alterations and the molecular classification of ACC by transcriptome analysis of 51 adult sporadic ACCs. All TP53 and CTNNB1 mutations seemed to be mutually exclusive and were observed only in the poor-outcome ACC group. Most of the abnormal p53 and β-catenin immunostaining was also found in this group. Fifty-two percent of the poor-outcome ACC group had TP53 or CTNNB1 mutations and 60% had abnormal p53 or β-catenin immunostaining. Unsupervised clustering transcriptome analysis of this pooroutcome group revealed three different subgroups, two of them being associated with p53 or β-catenin alterations, respectively. Analysis of p53 and β-catenin target gene expressions in each cluster confirmed a profound and anticipated effect on tumor biology, with distinct profiles logically associated with the respective pathway alterations. The third group had no p53 or β-catenin alteration, suggesting other unidentified molecular defects. This study shows the important respective roles of p53 and β-catenin in ACC development, delineating subgroups of ACC with different tumorigenesis and outcomes. Cancer Res; 70(21); 8276-81. ©2010 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.