Abstract. Hypergraph partitioning lies at the heart of a number of problems in machine learning and network sciences. Many algorithms for hypergraph partitioning have been proposed that extend standard approaches for graph partitioning to the case of hypergraphs. However, theoretical aspects of such methods have seldom received attention in the literature as compared to the extensive studies on the guarantees of graph partitioning. For instance, consistency results of spectral graph partitioning under the stochastic block model are well known. In this paper, we present a planted partition model for sparse random non-uniform hypergraphs that generalizes the stochastic block model. We derive an error bound for a spectral hypergraph partitioning algorithm under this model using matrix concentration inequalities. To the best of our knowledge, this is the first consistency result related to partitioning non-uniform hypergraphs.
Abstract. In this paper, we address the problem of conditional modality learning, whereby one is interested in generating one modality given the other. While it is straightforward to learn a joint distribution over multiple modalities using a deep multimodal architecture, we observe that such models aren't very effective at conditional generation. Hence, we address the problem by learning conditional distributions between the modalities. We use variational methods for maximizing the corresponding conditional log-likelihood. The resultant deep model, which we refer to as conditional multimodal autoencoder (CMMA), forces the latent representation obtained from a single modality alone to be 'close' to the joint representation obtained from multiple modalities. We use the proposed model to generate faces from attributes. We show that the faces generated from attributes using the proposed model, are qualitatively and quantitatively more representative of the attributes from which they were generated, than those obtained by other deep generative models. We also propose a secondary task, whereby the existing faces are modified by modifying the corresponding attributes. We observe that the modifications in face introduced by the proposed model are representative of the corresponding modifications in attributes.
Kullback-Leibler relative-entropy has unique properties in cases involving distributions resulting from relative-entropy minimization. Tsallis relative-entropy is a one parameter generalization of Kullback-Leibler relative-entropy in the nonextensive thermostatistics. In this paper, we present the properties of Tsallis relative-entropy minimization and present some differences with the classical case. In the representation of such a minimum relative-entropy distribution, we highlight the use of the q-product, an operator that has been recently introduced to derive the mathematical structure behind the Tsallis statistics. One of our main results is generalization of triangle equality of relative-entropy minimization to the nonextensive case.
Spectral clustering, a graph partitioning technique, has gained immense popularity in machine learning in the context of unsupervised learning. This is due to convincing empirical studies, elegant approaches involved and the theoretical guarantees provided in the literature. To tackle some challenging problems that arose in computer vision etc., recently, a need to develop spectral methods that incorporate multi-way similarity measures surfaced. This, in turn, leads to a hypergraph partitioning problem. In this paper, we formulate a criterion for partitioning uniform hypergraphs, and show that a relaxation of this problem is related to the multilinear singular value decomposition (SVD) of symmetric tensors. Using this, we provide a spectral technique for clustering based on higher order affinities, and derive a theoretical bound on the error incurred by this method. We also study the complexity of the algorithm and use Nystr ̈om’s method and column sampling techniques to develop approximate methods with significantly reduced complexity. Experiments on geometric grouping and motion segmentation demonstrate the practical significance of the proposed methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.