Inflammatory bowel disease (IBD) is a chronic and heterogeneous intestinal inflammatory disorder. The medical management of IBD aims for long-lasting disease remission to prevent complications and disease progression. Early introduction of immunosuppression forms the mainstay of medical IBD management. Large inter-individual variability in drug responses, in terms of both efficacy and toxicity, leads to high rates of therapeutic failure in the management of IBD. Better patient stratification is needed to maximize patient benefit and minimize the harm caused by adverse events. Pre-treatment pharmacogenetic testing has the potential to optimize drug selection and dose, and to minimize harm caused by adverse drug reactions. In addition, optimizing the use of cheap conventional drugs, and avoiding expensive ineffective drugs, will lead to a significant reduction in costs. Genetic variation in both TPMT and NUDT15 , genes involved in thiopurine metabolism, is associated to an increased risk of thiopurine-induced myelosuppression. Moreover, specific HLA haplotypes confer risk to thiopurine-induced pancreatitis and to immunogenicity to tumor necrosis factor-antagonists, respectively. Falling costs and increased availability of genetic tests allow for the incorporation of pre-treatment genetic tests into clinical IBD management guidelines. In this paper, we review clinically useful pharmacogenetic associations for individualized treatment of patients with IBD and discuss the path from identification of a predictive pharmacogenetic marker to implementation into IBD clinical care.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. SummaryBackground: High inter-individual variability in therapeutic response to drugs used in the management of Inflammatory Bowel Disease (IBD) leads to high morbidity and high costs. Genetic variants predictive of thiopurine-induced myelosuppression, thiopurine-induced pancreatitis and immunogenicity of Tumour Necrosis Factor alpha (TNFα) antagonists have been identified, but uptake of pre-treatment pharmacogenetic testing into clinical guidelines has been slow. Aim:To explore the efficacy of a pharmacogenetic passport for IBD that includes multiple pharmacogenetic predictors of response. Methods:Patients with IBD exposed to thiopurines and/or TNFα antagonists were retrospectively evaluated for the presence of thiopurine toxicity and/or immunogenicity of TNFα antagonists. All patients were genotyped using both whole-exome sequencing and the Illumina Global Screening Array. An in-house-developed computational pipeline translated genetic data into an IBD pharmacogenetic passport that predicted risks for thiopurine toxicity and immunogenicity of TNFα antagonists per patient. Using pharmacogenetic-guided treatment guidelines, we calculated clinical efficacy estimates for pharmacogenetic testing for IBD.Results: Among 710 patients with IBD exposed to thiopurines and/or TNFα antagonists, 150 adverse drug responses occurred and our pharmacogenetic passport would have predicted 54 (36%) of these. Using a pharmacogenetic passport for IBD that includes genetic variants predictive of thiopurine-induced myelosuppression, thiopurine-induced pancreatitis, and immunogenicity of TNFα antagonists, 24 patients need to be genotyped to prevent one of these adverse drug responses. Conclusions:This study highlights the clinical efficacy of a pharmacogenetic passport for IBD. Implementation of such a pharmacogenetic passport into clinical management of IBD may contribute to a reduction in adverse drug responses. S U PP O RTI N G I N FO R M ATI O NAdditional supporting information will be found online in the Supporting Information section. How to cite this article: BangmaA, Voskuil MD, Uniken Venema WTC, et al. Predicted efficacy of a pharmacogenetic passport for inflammatory bowel disease. Aliment Pharmacol
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.