Background The blood-brain barrier is richly populated by active influx and efflux transporters influencing brain drug concentrations. Morphine, a drug with delayed clinical onset, is a substrate for the efflux transporter P-glycoprotein in vitro and in animals. This investigation tested whether morphine is a transporter substrate in humans. Methods Fourteen healthy volunteers received morphine (0.1 mg/kg, 1 h intravenous infusion) in a crossover study after nothing (control) or the validated P-glycoprotein inhibitor cyclosporine (5 mg/kg, 2 h infusion). Plasma and urine morphine and morphine glucuronide metabolite concentrations were measured by mass spectrometry. Morphine effects were measured by miosis and analgesia. Results Cyclosporine minimally altered morphine disposition, increasing the area under the plasma morphine concentration versus time curve to 100 ± 21 versus 85 ± 24 ng/ml•hr (p < 0.05) without changing maximum plasma concentration. Cyclosporine enhanced (3.2 ± 0.9 vs. 2.5 ± 1.0 mm peak) and prolonged miosis, and increased the area under the miosis-time curve (18 ± 9 vs. 11 ± 5 mm-hr), plasma-effect site transfer rate constant (ke0, median 0.27 vs. 0.17 hr−1), and maximum calculated effect site morphine concentration (11.5 ± 3.7 vs. 7.6 ± 2.9 ng/ml) (all p < 0.05). Analgesia testing was confounded by cyclosporine-related pain. Conclusions Morphine is a transporter substrate at the human blood-brain barrier. Results suggest a role for P-glycoprotein or other efflux transporters in brain morphine access, although the magnitude of the effect is small, and unlikely to be a major determinant of morphine clinical effects. Efflux may explain some variability in clinical morphine effects.
Systemic and oral clearances of alfentanil are in vivo probes for hepatic and first-pass CYP3A. Both alfentanil single point plasma concentrations and miosis are surrogates for area under the concentration-time curve (AUC), clearance, and are minimal and non-invasive CYP3A probes. This investigation determined alfentanil sensitivity for detecting graded CYP3A induction, and compared it with that of midazolam Twelve volunteers (sequential crossover) received 0, 5, 10, 25 or 75 mg oral rifampin for 5d. Midazolam and alfentanil were given intravenously and orally on sequential days. Dark-adapted pupil diameters were measured with blood sampling. Graded rifampin decreased plasma midazolam AUCs to 83, 76, 62 and 59% (intravenous) and 78, 66, 39, and 24% (oral) of control. Hepatic and first-pass CYP3A induction were detected comparably by plasma midazolam and alfentanil AUCs. Single alfentanil concentrations detected all CYP3A induction, while midazolam was less sensitive. Alfentanil miosis detected induction of first-pass but not hepatic CYP3A.
Background Nitrous oxide causes an acute increase in plasma homocysteine that is more pronounced in patients with the MTHFR C677T or A1298C gene variant. In this randomized controlled trial we sought to determine if patients carrying the MTHFR C677T or A1298C variant had a higher risk for perioperative cardiac events after nitrous oxide anesthesia and if this risk could be mitigated by B-vitamins. Methods We randomized adult patients with cardiac risk factors undergoing noncardiac surgery to receive nitrous oxide plus intravenous B-vitamins before and after surgery or to nitrous oxide and placebo. Serial cardiac biomarkers and 12-lead electrocardiograms were obtained. The primary study endpoint was the incidence of myocardial injury, as defined by cardiac troponin I elevation within the first 72 hours after surgery. Results A total of 500 patients completed the trial. Patients who were homozygous for either MTHFR C677T or A1298C gene variant (n= 98; 19.6%) had no increased rate of postoperative cardiac troponin I elevation compared to wild-type and heterozygous patients (11.2% vs. 14.0%; relative risk 0.96, 95% CI 0.85 to 1.07, p=0.48). B-vitamins blunted the rise in homocysteine, but had no effect on cardiac troponin I elevation compared to patients receiving placebo (13.2% vs. 13.6%; relative risk 1.02, 95% CI 0.78 to 1.32, p=0.91). Conclusions Neither MTHFR C677T and A1298C gene variant nor acute homocysteine increase are associated with perioperative cardiac troponin elevation after nitrousoxide anesthesia. B-vitamins blunt nitrous oxide-induced homocysteine increase but have no effect on cardiac troponin elevation.
Objectives Folate metabolism is an important target for drug therapy. Drug-induced inhibition of folate metabolism often causes an elevation of plasma total homocysteine (tHcy). Plasma tHcy levels are influenced by several non-genetic (e.g., folate intake, age, smoking) as well as genetic factors. Over the last decade, several countries have implemented a nation-wide folate fortification program of all grain products. This investigation sought to determine the impact of folate fortification on the relative contribution of environmental and genetic factors to the variability of plasma tHcy. Methods Two cohorts were compared in this study, one from the U.S. (with folate fortification, n=281), and one from Austria (without folate fortification, n=139). Several environmental factors as well as previously identified gene variants important for tHcy levels (MTHFR C677T, MTHFR A1298C, MTRR A66G) were examined for their ability to predict plasma tHcy in a multiple linear regression model. Results Non-genetic, environmental factors had a comparable influence on plasma tHcy between the two cohorts (R2 ~ 0.19). However, after adjusting for other covariates, the tested gene variants had a substantially smaller impact among patients from the folate fortified cohort (R2= 0.021) compared to the non-folate fortified cohort (R2= 0.095). The MTHFR C677T polymorphism was the single most important genetic factor. Male gender, smoking and folate levels were important predictors for non-folate fortified patients; age for folate fortified. Conclusions Population-wide folate fortification had a significant effect on the variability of plasma tHcy and reduced the influence of genetic factors, most importantly the MTHFR 677TT genotype, and may be an important confounder for a personalized drug therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.