Perovskite oxides are a promising material class for photovoltaic and photocatalytic applications due to their visible band gaps, nanosecond recombination lifetimes, and great chemical diversity. However, there is limited understanding of the link between composition and static and dynamic optical properties despite the critical role these properties play in the design of light-harvesting devices. To clarify these relationships we systemically studied the optoelectronic properties in La 1-x Sr x FeO 3-δ epitaxial films, uncovering the effects of A-site cation substitution and oxygen stoichiometry. Variable angle spectroscopic ellipsometry was used to measure static optical properties, revealing a linear increase in absorption coefficient at 1.25 eV and a red-shifting of the optical absorption edge with increasing Sr fraction. The absorption spectra can be similarly tuned through the introduction of oxygen vacancies, indicating the critical role that nominal Fe valence plays in optical absorption. Dynamic optoelectronic properties were studied with ultrafast transient reflectance spectroscopy, revealing similar nanosecond photoexcited carrier lifetimes for oxygen deficient and stoichiometric films with the same nominal Fe valence. These results demonstrate that while the static optical absorption is strongly dependent on nominal Fe valence tuned through cation or anion stoichiometry, oxygen vacancies do not appear to play a significantly detrimental role in the recombination kinetics.
Engineering structural modifications of epitaxial perovskite thin films is an effective route to induce new functionalities or enhance existing properties due to the close relation of the electronic ground state to the local bonding environment. As such, there is a necessity to systematically refine and precisely quantify these structural displacements, particularly those of the oxygen octahedra, which is a challenge due to the weak scattering factor of oxygen and the small diffraction volume of thin films. Here, we present an optimized algorithm to refine the octahedral rotation angles using specific unit-cell-doubling half-order diffraction peaks for the a−a−c+ Pbnm structure. The oxygen and A-site positions can be obtained by minimizing the squared-error between calculated and experimentally determined peak intensities using the (1/2 1/2 3/2) and (1/2 1/2 5/2) reflections to determine the rotation angle α about in-plane axes and the (1/2 5/2 1), (1/2 3/2 1), and (1/2 3/2 2) reflections to determine the rotation angle γ about the out-of-plane axis, whereas the convoluting A-site displacements associated with the octahedral rotation pattern can be determined using (1 1 1/2) and (1/2 1/2 1/2) reflections to independently determine A-site positions. The validity of the approach is confirmed by applying the refinement procedure to determine the A-site and oxygen displacements in a NdGaO3 single crystal. The ability to refine both the oxygen and A-site displacements relative to the undistorted perovskite structure enables a deeper understanding of how structural modifications alter functionality properties in epitaxial films exhibiting this commonly occurring crystal structure.
The electronic properties of LaFeO3/LaMnO3 epitaxial heterojunctions are investigated to determine the valence and conduction band offsets and the nominal Mn and Fe valence states at the interface. Studying a systematic series of (LaFeO3)n/(LaMnO3)m bilayers (m ≈ 50) epitaxially grown in the (001) orientation using molecular beam epitaxy, layer‐resolved electron energy loss spectroscopy reveals a lack of significant interfacial charge transfer, with a nominal 3+ valence state observed for both Mn and Fe across the interface. Through a combination of variable angle spectroscopic ellipsometry and hard X‐ray photoelectron spectroscopy, type I energy level alignments are obtained at the LaFeO3/LaMnO3 interface with positive valence and conduction band offsets of (1.20 ± 0.07) eV and (0.5–0.7 ± 0.3) eV, respectively, with minimal band bending. Variable temperature resistivity measurements reveal that the bilayers remain insulating and that the presence of the heterojunction does not result in a conducting interface.
Measuring time-resolved photoexcited properties in semiconductors is critical to the design and improvement of light-harvesting devices. Although ultrafast pump–probe spectroscopy offers a promising route to understand carrier recombination mechanisms and quantify lifetimes, thermal contributions to the transient optical response can be significant and need to be properly accounted for to isolate carrier-induced contributions. We demonstrate the use of broadband ultrafast optical spectroscopy on type I heterostructures as a means to isolate transient effects that are solely thermal in nature. Specifically, we use transient absorption and reflectance spectroscopy to measure the time-resolved optoelectronic changes in photoexcited epitaxial bilayers of LaFeO3/LaMnO3 and monolithic thin films of these materials. Experiments and complementary numerical modeling reveal that thermal effects dominate the transient absorption and reflectance spectra above the band gap. Fitting the dynamics with a thermal diffusion model yields thermal conductivities of 6.4 W m–1 K–1 for LaFeO3 and 2.2 W m–1 K–1 for LaMnO3. In LaFeO3, an additional photoinduced absorption feature below the band gap at ∼1.9 eV is assigned primarily to photoexcited carriers and persists for over 3 ns. This work provides a direct demonstration of how thermal and electronic contributions can be separated in transient optical spectroscopies, enabling new insights into dynamical optical properties of semiconductors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.