We present spectropolarimetric observations of the nearby Type Ia SN 2014J in M82 over six epochs: +0, +7, +23, +51, +77, +109, and +111 days with respect to B-band maximum. The strong continuum polarization, which is constant with time, shows a wavelength dependence unlike that produced by linear dichroism in Milky Way dust. The observed polarization may be due entirely to interstellar dust or include a circumstellar scattering component. We find that the polarization angle aligns with the magnetic field of the host galaxy, arguing for an interstellar origin. Additionally, we confirm a peak in polarization at short wavelengths that would imply R V < 2 along the light of sight, in agreement with earlier polarization measurements. For illustrative purposes, we include a two component fit to the continuum polarization of our +51 day epoch that combines a circumstellar scattering component with interstellar dust where scattering can account for over half of the polarization at 4000Å. Upon removal of the interstellar polarization signal, SN 2014J exhibits very low levels of continuum polarization. Asymmetries in the distribution of elements within the ejecta are visible through moderate levels of time-variable polarization in accordance with the Si II 6355Å absorption line. At maximum light, the line polarization reaches ∼ 0.6% and decreases to ∼ 0.4% one week later. This feature also forms a loop on the q RSPu RSP plane illustrating that the ion does not have an axisymmetric distribution. The observed polarization properties suggest the explosion geometry of SN 2014J is generally spheroidal with a clumpy distribution of silicon.
We present multiple spectropolarimetric observations of the nearby TypeIa supernova (SN) 2011fe in M101, obtained before, during, and after the time of maximum apparent visual brightness. The excellent time coverage of our spectropolarimetry has allowed better monitoring of the evolution of polarization features than is typical, which has allowed us new insight into the nature of normal SNeIa. SN2011fe exhibits time-dependent polarization in both the continuum and strong absorption lines. At early epochs, red wavelengths exhibit a degree of continuum polarization of up to 0.4%, likely indicative of a mild asymmetry in the electron-scattering photosphere. This behavior is more common in subluminous SNeIa than in normal events, such as SN2011fe. The degree of polarization across a collection of absorption lines varies dramatically from epoch to epoch. During the earliest epoch, a λ4600-5000 Å complex of absorption lines shows enhanced polarization at a different position angle than the continuum. We explore the origin of these features, presenting a few possible interpretations, without arriving at a single favored ion. During two epochs near maximum, the dominant polarization feature is associated with the Si II λ6355 Å absorption line. This is common for SNeIa, but for SN2011fe the polarization of this feature increases after maximum light, whereas for other SNeIa, that polarization feature was strongest before maximum light.
Because polarization encodes geometrical information about unresolved scattering regions, it provides a unique tool for analyzing the 3-D structures of supernovae (SNe) and their surroundings. SNe of all types exhibit time-dependent spectropolarimetric signatures produced primarily by electron scattering. These signatures reveal physical phenomena such as complex velocity structures, changing illumination patterns, and asymmetric morphologies within the ejecta and surrounding material. Interpreting changes in polarization over time yields unprecedentedly detailed information about supernovae, their progenitors, and their evolution.Begun in 2012, the SNSPOL Project continues to amass the largest database of time-dependent spectropolarimetric data on SNe. I present an overview of the project and its recent results. In the future, combining such data with interpretive radiative transfer models will further constrain explosion mechanisms and processes that shape SN ejecta, uncover new relationships among SN types, and probe the properties of progenitor winds and circumstellar material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.