We have recently demonstrated that while the osmotic water permeability (P f ) of neonatal proximal tubules is higher than that of adult tubules, the P f of brush-border membrane vesicles from neonatal rabbits is lower than that of adults. The present study examined developmental changes in the water transport characteristics of proximal tubule basolateral membranes by determining aquaporin 1 (AQP1) protein abundance and the P f in neonatal (10-14 days old) and adult rabbit renal basolateral membrane vesicles (BLMV). At 25°C the P f of neonatal BLMV was significantly lower than the adult BLMV at osmotic gradients ranging from 40 to 160 mOsm/kg water. The activation energies for osmotic water movement were identical in the neonatal and adult BLMV (8.65 ± 0.47 vs. 8.86 ± 1.35 kcal · deg −1 · mol −1 ). Reflection coefficients for sodium chloride and sodium bicarbonate were identical in both the neonatal and adult BLMV and were not different from one. Mercury chloride (0.5 mM) reduced osmotic water movement by 31.3 ± 5.5% in the adult BLMV, but by only 4.0 ± 4.0% in neonatal vesicles (P < 0.01). Adult BLMV AQP1 abundance was higher than that in the neonate. These data demonstrate that neonatal BLMV have a lower P f and AQP1 protein abundance than adults and that a significantly greater fraction of water traverses the basolateral membrane lipid bilayer and not water channels in neonates compared to adults. The lower P f of the neonatal BLMV indicates that the basolateral membrane is not responsible for the higher transepithelial P f in the neonatal proximal tubule.
Urea transport in the proximal tubule is passive and is dependent on the epithelial permeability. The present study examined the maturation of urea permeability (P(urea)) in in vitro perfused proximal convoluted tubules (PCT) and basolateral membrane vesicles (BLMV) from rabbit renal cortex. Urea transport was lower in neonatal than adult PCT at both 37 and 25 degrees C. The PCT P(urea) was also lower in the neonates than the adults (37 degrees C: 45.4 +/- 10.8 vs. 88.5 +/- 15.2 x 10(-6) cm/s, P < 0.05; 25 degrees C: 28.5 +/- 6.9 vs. 55.3 +/- 10.4 x 10(-6) cm/s; P < 0.05). The activation energy for PCT P(urea) was not different between the neonatal and adult groups. BLMV P(urea) was determined by measuring vesicle shrinkage, due to efflux of urea, using a stop-flow instrument. Neonatal BLMV P(urea) was not different from adult BLMV P(urea) at 37 degrees C [1.14 +/- 0.05 x 10(-6) vs. 1.25 +/- 0.05 x 10(-6) cm/s; P = not significant (NS)] or 25 degrees C (0.94 +/- 0.06 vs. 1.05 +/- 0.10 x 10(-6) cm/s; P = NS). There was no effect of 250 microM phloretin, an inhibitor of the urea transporter, on P(urea) in either adult or neonatal BLMV. The activation energy for urea diffusion was also identical in the neonatal and adult BLMV. These findings in the BLMV are in contrast to the brush-border membrane vesicles (BBMV) where we have previously demonstrated that urea transport is lower in the neonate than the adult. Urea transport is lower in the neonatal proximal tubule than the adult. This is due to a lower rate of apical membrane urea transport, whereas basolateral urea transport is the same in neonates and adults. The lower P(urea) in neonatal proximal tubules may play a role in overall urea excretion and in developing and maintaining a high medullary urea concentration and thus in the ability to concentrate the urine during renal maturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.