Sustained T cell receptor (TCR) stimulation is required for maintaining germinal center T follicular helper (GC-TFH) cells. Paradoxically, TCR activation induces interleukin-2 receptor (IL-2R) expression and IL-2 production, thereby initiating a feedback loop of IL-2 signaling that normally inhibits TFH cells. It is unclear how GC-TFH cells can receive prolonged TCR signaling without succumbing to the detrimental effects of IL-2. Using an influenza infection model, we show here that GC-TFH cells secreted large amounts of IL-2 but responded poorly to it. To maintain their IL-2 hyporesponsiveness, GC-TFH cells required intrinsic IL-6 signaling. Mechanistically, we found that IL-6 inhibited up-regulation of IL-2Rβ (CD122) by preventing association of STAT5 with the Il2rb locus, thus allowing GC-TFH cells to receive sustained TCR signaling and produce IL-2 without initiating a TCR/IL-2 inhibitory feedback loop. Collectively, our results identify a regulatory mechanism that controls the generation of GC-TFH cells.
Infants have a higher risk of developing allergic asthma than adults. However, the underlying mechanism remains unknown. We show here that sensitization of mice with house-dust mites (HDMs) in the presence of low-dose lipopolysaccharide (LPS) prevented T helper 2 (Th2) cell allergic responses in adult, but not infant, mice. Mechanistically, adult CD11b + migratory dendritic cells (mDCs) upregulated the transcription factor T-bet in response to tumor necrosis factor-a (TNF-a), which was rapidly induced after HDM + LPS sensitization. Consequently, adult CD11b + mDCs produced interleukin-12 (IL-12), which prevented Th2 cell development by promoting T-bet upregulation in responding T cells. Conversely, infants failed to induce TNF-a after HDM + LPS sensitization. Therefore, CD11b + mDCs failed to upregulate T-bet and did not secrete IL-12 and Th2 cell responses normally developed in infant mice. Thus, the availability of TNF-a dictates the ability of CD11b + mDCs to suppress allergic Th2-cell responses upon dose-dependent endotoxin sensitization and is a key mediator governing susceptibility to allergic airway inflammation in infant mice.
SUMMARY Immunoglobulin M (IgM) memory cells undergo differentiation in germinal centers following antigen challenge, but the full effector cell potential of these cells is unknown. We monitored the differentiation of enhanced yellow fluorescent protein (eYFP)- labeled CD11c+ and CD11cneg T-bet+ IgM memory cells after their transfer into naive recipient mice. Following challenge infection, many memory cells differentiated into IgM-producing plasmablasts. Other donor B cells entered germinal centers, down- regulated CD11c, underwent class switch recombination, and became switched memory cells. Yet other donor cells were maintained as IgM memory cells, and these IgM memory cells retained their multi-lineage potential following serial transfer. These findings were corroborated at the molecular level using immune repertoire analyses. Thus, IgM memory cells can differentiate into all effector B cell lineages and undergo self-renewal, properties that are characteristic of stem cells. We propose that these memory cells exist to provide long-term multi-functional immunity and act primarily to maintain the production of protective antibodies.
Lipopolysaccharide (LPS) can either promote or prevent T helper 2 (Th2) cell allergic responses. However, the underlying mechanism remains unknown. We show here that LPS activity switches from pro-pathogenic to protective depending on the production of granulocyte-macrophage colony-stimulating factor (GM-CSF) by non-classical monocytes. In the absence of GM-CSF, LPS can favor pathogenic Th2 cell responses by supporting the trafficking of lung-migratory dendritic cells (mDC2s) into the lung-draining lymph node. However, when non-classical monocytes produce GM-CSF, LPS and GM-CSF synergize to differentiate monocytederived DCs from classical Ly6C hi monocytes that instruct mDC2s for Th2 cell suppression. Importantly, only allergens with cysteine protease activity trigger GM-CSF production by non-classical monocytes. Hence, the therapeutic effect of LPS is restricted to allergens with this enzymatic activity. Treatment with GM-CSF, however, restores the protective effects of LPS. Thus, GM-CSF produced by non-classical monocytes acts as a rheostat that fine-tunes the pathogenic and therapeutic functions of LPS.
CD11c+ T-bet+ B cells have now been detected and characterized in different experimental and clinical settings, in both mice and humans. Whether such cells are monolithic, or define subsets of B cells with different functions is not yet known. Our studies have identified CD11c+ IgM+ CD19hi splenic IgM memory B cells that appear at approximately three weeks post-ehrlichial infection, and persist indefinitely, during low-level chronic ehrlichial infection. Although the CD11c+T-bet+ B cells we have described are distinct, they appear to share many features with similar cells detected under diverse conditions, including viral infections, aging, and autoimmunity. We propose that CD11c+ T-bet+ B cells as a group share characteristics of memory B cells that are maintained under conditions of inflammation and/or low-level chronic antigen stimulation. In some cases, these cells may be advantageous, by providing immunity to re-infection, but in others may be deleterious, by contributing to aged-associated autoimmune responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.