Voltage sensitive calcium channels (VSCCs) mediate signaling events in bone cells in response to mechanical loading. Osteoblasts predominantly express L-type VSCCs composed of the α1 pore-forming subunit and several auxiliary subunits. Osteocytes, in contrast, express T-type VSCCs, but a relatively small amount of L-type α1 subunits. Auxiliary VSCC subunits have several functions including modulating gating kinetics, trafficking of the channel and phosphorylation events. The influence of the α2δ auxiliary subunit on T-type VSCCs and the physiological consequences of that association are incompletely understood and have yet to be investigated in bone. In this study, we postulated that the auxiliary α2δ subunit of the VSCC complex modulates mechanically-regulated ATP release in osteocytes via its association with the T-type, Cav3.2 (α1H) subunit. We demonstrated by RT-PCR, Western blotting, and immunostaining that MLO-Y4 osteocyte-like cells express the T-type, Cav3.2 (α1H) subunit more abundantly than the L-type, Cav1.2 (α1C). We also demonstrated that the α2δ1 subunit, previously described as an L-type auxiliary subunit, complexes with the T-type Cav3.2 (α1H) subunit in MLO-Y4 cells. Interestingly, siRNA mediated knockdown of α2δ1 completely abrogated ATP release in response to membrane stretch in MLO-Y4 cells. Additionally, knockdown of the α2δ1 subunit and resulted in reduced ERK1/2 activation. Together these data demonstrate a functional VSCC complex. Immunocytochemistry following α2δ1 knockdown showed decreased membrane localization of Cav3.2 (α1H) at the plasma membrane, suggesting that the diminished ATP release and ERK1/2 activation in response to membrane stretch resulted from a lack of Cav3.2 (α1H) at the cell membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.