Fluorescence imaging is an emerging clinical technique for real-time intraoperative visualization of tumors and their boundaries. Though multiple fluorescent contrast agents are available in the basic sciences, few fluorescence agents are available for clinical use. Of the clinical fluorophores, delta aminolevulinic acid (5ALA) is unique for generating visible wavelength tumor-specific fluorescence. In 2017, 5ALA was FDA-approved for glioma surgery in the United States. Additionally, clinical studies suggest this agent may have utility in surgical subspecialties outside of neurosurgery. Data from dermatology, OB/GYN, urology, cardiothoracic surgery, and gastrointestinal surgery show 5ALA is helpful for intraoperative visualization of malignant tissues in multiple organ systems. This review summarizes data from English-language 5ALA clinical trials across surgical subspecialties. Imaging systems, routes of administration, dosing, efficacy, and related side effects are reviewed. We found that modified surgical microscopes and endoscopes are the preferred imaging devices. Systemic dosing across surgical specialties range between 5 and 30 mg/kg bodyweight. Multiple studies discussed potential for skin irritation with sun exposure, however this side effect is infrequently reported. Overall, 5ALA has shown high sensitivity for labeling malignant tissues and providing a means to visualize malignant tissue not apparent with standard operative light sources.
OBJECTIVEHead of bed (HOB) elevation to 30° after severe traumatic brain injury (TBI) has become standard positioning across all age groups. This maneuver is thought to minimize the risk of elevated ICP in the hopes of decreasing cerebral blood and fluid volume and increasing cerebral venous outflow with improvement in jugular venous drainage. However, HOB elevation is based on adult population data due to a current paucity of pediatric TBI studies regarding HOB management. In this prospective study of pediatric patients with severe TBI, the authors investigated the role of different head positions on intracranial pressure (ICP), cerebral perfusion pressure (CPP), and cerebral venous outflow through the internal jugular veins (IJVs) on postinjury days 2 and 3 because these time periods are considered the peak risk for intracranial hypertension.METHODSPatients younger than 18 years with a Glasgow Coma Scale score ≤ 8 after severe TBI were prospectively recruited at a single quaternary pediatric intensive care unit. All patients had an ICP monitor placed, and no other neurosurgical procedure was performed. On the 2nd and 3rd days postinjury, the degree of HOB elevation was varied between 0° (head-flat or horizontal), 10°, 20°, 30°, 40°, and 50° while ICP, CPP, and bilateral IJV blood flows were recorded.RESULTSEighteen pediatric patients with severe TBI were analyzed. On each postinjury day, 13 of the 18 patients had at least 1 optimal HOB position (the position that simultaneously demonstrated the lowest ICP and the highest CPP). Six patients on each postinjury day had 30° as the optimal HOB position, with only 2 being the same patient on both postinjury days. On postinjury day 2, 3 patients had more than 1 optimal HOB position, while 5 patients did not have an optimal position. On postinjury day 3, 2 patients had more than 1 optimal HOB position while 5 patients did not have an optimal position. Interestingly, 0° (head-flat or horizontal) was the optimal HOB position in 2 patients on postinjury day 2 and 3 patients on postinjury day 3. The optimal HOB position demonstrated lower right IJV blood flow than a nonoptimal position on both postinjury days 2 (p = 0.0023) and 3 (p = 0.0033). There was no significant difference between optimal and nonoptimal HOB positions in the left IJV blood flow.CONCLUSIONSIn pediatric patients with severe TBI, the authors demonstrated that the optimal HOB position (which decreases ICP and improves CPP) is not always at 30°. Instead, the optimal HOB should be individualized for each pediatric TBI patient on a daily basis.
OBJECTIVEDifferentiating central nervous system (CNS) lymphoma from other intracranial malignancies remains a clinical challenge in surgical neuro-oncology. Advances in clinical fluorescence imaging contrast agents and devices may mitigate this challenge. Aptamers are a class of nanomolecules engineered to bind cellular targets with antibody-like specificity in a fraction of the staining time. Here, the authors determine if immediate ex vivo fluorescence imaging with a lymphoma-specific aptamer can rapidly and specifically diagnose xenografted orthotopic human CNS lymphoma at the time of biopsy.METHODSThe authors synthesized a fluorescent CNS lymphoma-specific aptamer by conjugating a lymphoma-specific aptamer with Alexa Fluor 488 (TD05-488). They modified human U251 glioma cells and Ramos lymphoma cells with a lentivirus for constitutive expression of red fluorescent protein and implanted them intracranially into athymic nude mice. Three to 4 weeks postimplantation, acute slices (biopsies, n = 28) from the xenografts were collected, placed in aptamer solution, and imaged with a Zeiss fluorescence microscope. Three aptamer staining concentrations (0.3, 1.0, and 3.0 μM) and three staining times (5, 10, and 20 minutes) followed by a 1-minute wash were tested. A file of randomly selected images was distributed to neurosurgeons and neuropathologists, and their ability to distinguish CNS lymphoma from negative controls was assessed.RESULTSThe three staining times and concentrations of TD05-488 were tested to determine the diagnostic accuracy of CNS lymphoma within a frozen section time frame. An 11-minute staining protocol with 1.0-μM TD05-488 was most efficient, labeling 77% of positive control lymphoma cells and less than 1% of negative control glioma cells (p < 0.001). This protocol permitted clinicians to positively identify all positive control lymphoma images without misdiagnosing negative control images from astrocytoma and normal brain.CONCLUSIONSEx vivo fluorescence imaging is an emerging technique for generating rapid histopathological diagnoses. Ex vivo imaging with a novel aptamer-based fluorescent nanomolecule could provide an intraoperative tumor-specific diagnosis of CNS lymphoma within 11 minutes of biopsy. Neurosurgeons and neuropathologists interpreted images generated with this molecular probe with high sensitivity and specificity. Clinical application of TD05-488 may permit specific intraoperative diagnosis of CNS lymphoma in a fraction of the time required for antibody staining.
OBJECTIVE Single-ventricle congenital heart disease (CHD) in pediatric patients with Glenn and Fontan physiology represents a unique physiology requiring the surgical diversion of the systemic venous return from the superior vena cava (Glenn) and then the inferior vena cava (Fontan) directly to the pulmonary arteries. Because many of these patients are on chronic anticoagulation therapy and may have right-to-left shunts, arrhythmias, or lymphatic disorders that predispose them to bleeding and/or clotting, they are at risk of experiencing neurological injury requiring intubation and positive pressure ventilation, which can significantly hamper pulmonary blood flow and cardiac output. The aim of this study was to describe the complex neurological and cardiopulmonary interactions of these pediatric patients after acute central nervous system (CNS) injury. METHODS The authors retrospectively analyzed the records of pediatric patients who had been admitted to a quaternary children’s hospital with CHD palliated to bidirectional Glenn (BDG) or Fontan circulation and acute CNS injury and who had undergone intubation and mechanical ventilation. Patients who had been admitted from 2005 to 2019 were included in the study. Clinical characteristics, surgical outcomes, cardiovascular and pulmonary data, and intracranial pressure data were collected and analyzed. RESULTS Nine pediatric single-ventricle patients met the study inclusion criteria. All had undergone the BDG procedure, and the majority (78%) were status post Fontan palliation. The mean age was 7.4 years (range 1.3–17.3 years). At the time of acute CNS injury, which included traumatic brain injury, intracranial hemorrhage, and cerebral infarct, the median time interval from the most recent cardiac surgical procedure was 3 years (range 2 weeks–11 years). Maintaining normocarbia to mild hypercarbia for most patients during intubation periods did not cause neurological deterioration, and hemodynamic profiles were more favorable as compared to periods of hypocarbia. Hypocarbia was associated with unfavorable hemodynamics but was necessary to decrease intracranial hypertension. Most patients were managed using low mean airway pressure (MAWP) in order to minimize the impact on preload and cardiac output. CONCLUSIONS The authors highlight the complex neurological and cardiopulmonary interactions with respect to partial pressure of arterial CO2 (PaCO2) and MAWP when pediatric CHD patients with single-ventricle physiology require mechanical ventilation. The study data demonstrated that tight control of PaCO2 and minimizing MAWP with the goal of early extubation may be beneficial in this population. A multidisciplinary team of pediatric critical care intensivists, cardiac intensivists and anesthesiologists, and pediatric neurosurgeons and neurologists are recommended to ensure the best possible outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.