Pearl millet is a cereal crop known for its high tolerance to drought, heat and salinity stresses as well as for its nutritional quality. The molecular mechanism of drought tolerance in pearl millet is unknown. Here we attempted to unravel the molecular basis of drought tolerance in two pearl millet inbred lines, ICMB 843 and ICMB 863 using RNA sequencing. Under greenhouse condition, ICMB 843 was found to be more tolerant to drought than ICMB 863. We sequenced the root transcriptome from both lines under control and drought conditions using an Illumina Hi-Seq platform, generating 139.1 million reads. Mapping of sequenced reads against the foxtail millet genome, which has been relatively well-annotated, led to the identification of several differentially expressed genes under drought stress. Total of 6799 and 1253 differentially expressed genes were found in ICMB 843 and ICMB 863, respectively. Pathway and gene function analysis by KEGG online tool revealed that the drought response in pearl millet is mainly regulated by pathways related to photosynthesis, plant hormone signal transduction and mitogen-activated protein kinase signaling. The changes in expression of drought-responsive genes determined by RNA sequencing were confirmed by reverse-transcription PCR for 7 genes. These results are a first step to understanding the molecular mechanisms of drought tolerance in pearl millet and lay a foundation for its genetic improvement.
RNA methylation is an important post-transcriptional modification that influences gene regulation. Over 200 different types of RNA modifications have been identified in plants. In animals, the mystery of RNA methylation has been revealed, and its biological role and applications have become increasingly clear. However, RNA methylation in plants is still poorly understood. Recently, plant science research on RNA methylation has advanced rapidly, and it has become clear that RNA methylation plays a critical role in plant development. This review summarizes current knowledge on RNA methylation in plant development. Plant writers, erasers, and readers are highlighted, as well as the occurrence, methods, and software development in RNA methylation is summarized. The most common and abundant RNA methylation in plants is N6-methyladenosine (m6A). In Arabidopsis, mutations in writers, erasers, and RNA methylation readers have affected the plant’s phenotype. It has also been demonstrated that methylated TRANSLATIONALLY CONTROLLED TUMOR PROTEIN 1-messenger RNA moves from shoot to root while unmethylated TCTP1-mRNA does not. Methylated RNA immunoprecipitation, in conjunction with next-generation sequencing, has been a watershed moment in plant RNA methylation research. This method has been used successfully in rice, Arabidopsis, Brassica, and maize to study transcriptome-wide RNA methylation. Various software or tools have been used to detect methylated RNAs at the whole transcriptome level; the majority are model-based analysis tools (for example, MACS2). Finally, the limitations and future prospects of methylation of RNA research have been documented.
Background
Pearl millet (Pennisetum glaucum) is a cereal crop that possesses the ability to withstand drought, salinity and high temperature stresses. The NAC [NAM (No Apical Meristem), ATAF1 (Arabidopsis thaliana Activation Factor 1), and CUC2 (Cup-shaped Cotyledon)] transcription factor family is one of the largest transcription factor families in plants. NAC family members are known to regulate plant growth and abiotic stress response. Currently, no reports are available on the functions of the NAC family in pearl millet.
Results
Our genome-wide analysis found 151 NAC transcription factor genes (PgNACs) in the pearl millet genome. Thirty-eight and 76 PgNACs were found to be segmental and dispersed duplicated respectively. Phylogenetic analysis divided these NAC transcription factors into 11 groups (A-K). Three PgNACs (− 073, − 29, and − 151) were found to be membrane-associated transcription factors. Seventeen other conserved motifs were found in PgNACs. Based on the similarity of PgNACs to NAC proteins in other species, the functions of PgNACs were predicted. In total, 88 microRNA target sites were predicted in 59 PgNACs. A previously performed transcriptome analysis suggests that the expression of 30 and 42 PgNACs are affected by salinity stress and drought stress, respectively. The expression of 36 randomly selected PgNACs were examined by quantitative reverse transcription-PCR. Many of these genes showed diverse salt- and drought-responsive expression patterns in roots and leaves. These results confirm that PgNACs are potentially involved in regulating abiotic stress tolerance in pearl millet.
Conclusion
The pearl millet genome contains 151 NAC transcription factor genes that can be classified into 11 groups. Many of these genes are either upregulated or downregulated by either salinity or drought stress and may therefore contribute to establishing stress tolerance in pearl millet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.