The origin and meaning of facial beauty represent a longstanding puzzle. Despite the profuse literature devoted to facial attractiveness, its very nature, its determinants and the nature of inter-person differences remain controversial issues. Here we tackle such questions proposing a novel experimental approach in which human subjects, instead of rating natural faces, are allowed to efficiently explore the face-space and “sculpt” their favorite variation of a reference facial image. The results reveal that different subjects prefer distinguishable regions of the face-space, highlighting the essential subjectivity of the phenomenon. The different sculpted facial vectors exhibit strong correlations among pairs of facial distances, characterising the underlying universality and complexity of the cognitive processes, and the relative relevance and robustness of the different facial distances.
The perception of facial attractiveness is a complex phenomenon which depends on how the observer perceives not only individual facial features, but also their mutual influence and interplay. In the machine learning community, this problem is typically tackled as a problem of regression of the subject-averaged rating assigned to natural faces. However, it has been conjectured that this approach does not capture the complexity of the phenomenon. It has recently been shown that different human subjects can navigate the face-space and “sculpt” their preferred modification of a reference facial portrait. Here we present an unsupervised inference study of the set of sculpted facial vectors in such experiments. We first infer minimal, interpretable and accurate probabilistic models (through Maximum Entropy and artificial neural networks) of the preferred facial variations, that encode the inter-subject variance. The application of such generative models to the supervised classification of the gender of the subject that sculpted the face reveals that it may be predicted with astonishingly high accuracy. We observe that the classification accuracy improves by increasing the order of the non-linear effective interaction. This suggests that the cognitive mechanisms related to facial discrimination in the brain do not involve the positions of single facial landmarks only, but mainly the mutual influence of couples, and even triplets and quadruplets of landmarks. Furthermore, the high prediction accuracy of the subjects’ gender suggests that much relevant information regarding the subjects may influence (and be elicited from) their facial preference criteria, in agreement with the multiple motive theory of attractiveness proposed in previous works.
The perception of facial beauty is a complex phenomenon depending on many, detailed and global facial features influencing each other. In the machine learning community this problem is typically tackled as a problem of supervised inference. However, it has been conjectured that this approach does not capture the complexity of the phenomenon. A recent original experiment (Ibáñez-Berganza et al., Scientific Reports 9, 8364, 2019) allowed different human
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.