Introduction The novel coronavirus SARS-CoV-2 has spread all over the world causing a global pandemic and representing a great medical challenge. Nowadays, there is limited knowledge on the rate of co-infections with other respiratory pathogens, with viral co-infection being the most representative agents. Co-infection with Mycoplasma pneumoniae has been described both in adults and pediatrics whereas only two cases of Chlamydia pneumoniae have been reported in a large US study so far. Methods In the present report, we describe a series of seven patients where co-infection with C. pneumoniae (n = 5) or M. pneumoniae (n = 2) and SARS-CoV-2 was detected in a large teaching hospital in Rome. Results and conclusion An extensive review of the updated literature regarding the co-infection between SARS-CoV-2 and these atypical pathogens is also performed.
The novel coronavirus SARS-CoV-2 has spread all over the world causing a global pandemic and representing a great medical challenge. Nowadays, there is limited knowledge on the rate of co-infections with other respiratory pathogens, with viral co-infection being the most representative agents. Co-infection with Mycoplasma pneumoniae has been described both in adults and pediatrics whereas only 2 cases of Chlamydia pneumoniae have been reported in a large US study so far. In the present report, we describe a series of 7 patients where co-infection with C. pneumoniae (n=5) or M. pneumoniae (n=2) and SARS-CoV-2 was detected in a large teaching hospital in Rome. An extensive review of the updated literature regarding the co-infection between SARS-CoV-2 and these atypical pathogens is also performed.
The novel coronavirus SARS-CoV-2 has spread all over the world causing a global pandemic and representing a great medical challenge. Nowadays, there is limited knowledge on the rate of co-infections with other respiratory pathogens, with viral co-infection being the most representative agents. Co-infection with Mycoplasma pneumoniae has been described both in adults and pediatrics whereas only 2 cases of Chlamydia pneumoniae have been reported in a large US study so far. In the present report, we describe a series of 7 patients where co-infection with C. pneumoniae (n=5) or M. pneumoniae (n=2) and SARS-CoV-2 was detected in a large teaching hospital in Rome. An extensive review of the updated literature regarding the co-infection between SARS-CoV-2 and these atypical pathogens is also performed.
The novel coronavirus SARS-CoV-2 has spread all over the world causing a global pandemic and representing a great medical challenge. Nowadays, there is limited knowledge on the rate of co-infections with other respiratory pathogens, with viral co-infection being the most representative agents. Co-infection with Mycoplasma pneumoniae has been described both in adults and pediatrics whereas only 2 cases of Chlamydia pneumoniae have been reported in a large US study so far. In the present report, we describe a series of 7 patients where co-infection with C. pneumoniae (n=5) or M. pneumoniae (n=2) and SARS-CoV-2 was detected in a large teaching hospital in Rome. An extensive review of the updated literature regarding the co-infection between SARS-CoV-2 and these atypical pathogens is also performed.
BackgroundRespiratory failure is a severe complication in COVID-19 pneumonia that, in addition to oxygen therapy, may require CPAP support. It has been postulated that COVID-19 lung injury may share some features with those observed in HALI. Thus, a correct target PaO2during oxygen supplementation may be crucial to protect the lung from further tissue damage. Aims of the study were: 1) to evaluate the effects of conservative oxygen supplementation during Helmet CPAP therapy on mortality and ICU admission in patients with COVID-19 and respiratory failure; 2) to evaluate the effect of conservative oxygen supplementation on new-onset organ failure and secondary pulmonary infections.MethodsThis was a single-center, historically controlled study of patients with severe respiratory failure due to COVID-19 pneumonia, receiving either conservative or non-conservative oxygen supplementation during Helmet CPAP. A cohort receiving conservative oxygen supplementation was studied prospectively in which oxygen supplementation was administered with a target PaO2<100 mmHg. Results of this cohort were compared with those of a cohort who had received liberal oxygen supplementation.ResultsSeventy-one patients were included in the conservative cohort and 75 in the non-conservative cohort. Mortality rate was lower in the conservative cohort (22.5%versus62.7%, p<0.001). Rates of ICU admission and new-onset rate organ failure were lower in conservative cohort (14.1%versus37.3%, p=0.001, and 9.9%versus45.3% p<0.001, respectively).ConclusionsIn patients with COVID-19 and severe respiratory failure, conservative oxygen supplementation during Helmet CPAP was associated to improved survival, lower ICU admission rate and less new-onset organ failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.