The healthy vaginal microbiota is dominated by Lactobacillus spp., which provide an important critical line of defense against pathogens, as well as giving beneficial effects to the host. We characterized L. gasseri 1A‐TV, L. fermentum 18A‐TV, and L. crispatus 35A‐TV, from the vaginal microbiota of healthy premenopausal women, for their potential probiotic activities. The antimicrobial effects of the 3 strains and their combination against clinical urogenital bacteria were evaluated together with the activities of their metabolites produced by cell‐free supernatants (CFSs). Their beneficial properties in terms of ability to interfere with vaginal pathogens (co‐aggregation, adhesion to HeLa cells, biofilm formation) and antimicrobial activity mediated by CFSs were assessed against multidrug urogenital pathogens (S. agalactiae, E. coli, KPC‐producing K. pneumoniae, S. aureus, E. faecium VRE, E. faecalis, P. aeruginosa, P. mirabilis, P. vulgaris, C. albicans, C. glabrata). The Lactobacilli tested exhibited an extraordinary ability to interfere and co‐aggregate with urogenital pathogens, except for Candida spp., as well as to adhere to HeLa cells and to produce biofilm in the Lactobacillus combination. Lactobacillus CFSs and their combination revealed a strong bactericidal effect on the multidrug resistant indicator strains tested, except for E. faecium and E. faecalis. The antimicrobial activity was maintained after heat treatment but decreased after enzymatic treatment. All Lactobacilli showed lactic dehydrogenase activity and production of D‐ and L‐lactic acid isomers on Lactobacillus CFSs, while only 1A‐TV and 35A‐TV released hydrogen peroxide and carried helveticin J and acidocin A bacteriocins. These results suggest that they can be employed as a new vaginal probiotic formulation and bio‐therapeutic preparation against urogenital infections. Further, in vivo studies are needed to evaluate human health benefits in clinical situations.
Recent evidence has demonstrated that salivary molecules, as well as bacterial populations, can be perturbed by several pathological conditions, including neuro-psychiatric diseases. This relationship between brain functionality and saliva composition could be exploited to unveil new pathological mechanisms of elusive diseases, such as Autistic Spectrum Disorder (ASD). We performed a combined approach of miRNA expression profiling by NanoString technology, followed by validation experiments in qPCR, and 16S rRNA microbiome analysis on saliva from 53 ASD and 27 neurologically unaffected control (NUC) children. MiR-29a-3p and miR-141-3p were upregulated, while miR-16-5p, let-7b-5p, and miR-451a were downregulated in ASD compared to NUCs. Microbiome analysis on the same subjects revealed that Rothia, Filifactor, Actinobacillus, Weeksellaceae, Ralstonia, Pasteurellaceae, and Aggregatibacter increased their abundance in ASD patients, while Tannerella, Moryella and TM7-3 decreased. Variations of both miRNAs and microbes were statistically associated to different neuropsychological scores related to anomalies in social interaction and communication. Among miRNA/bacteria associations, the most relevant was the negative correlation between salivary miR-141-3p expression and Tannerella abundance. MiRNA and microbiome dysregulations found in the saliva of ASD children are potentially associated with cognitive impairments of the subjects. Furthermore, a potential cross-talking between circulating miRNAs and resident bacteria could occur in saliva of ASD.
Streptococcus salivarius 24SMBc is an oral probiotic with antimicrobial activity against the otopathogens Streptococcus pyogenes and Streptococcus pneumoniae. Clinical studies have reinforced its role in reducing the recurrence of upper respiratory tract infections (URTIs) and rebalancing the nasal microbiota. In this study, for the first time, we characterized 24SMBc by whole genome sequencing and annotation; likewise, its antagonistic activity vs. Streptococcus pneumoniae and Streptococcus pyogenes was evaluated by in vitro co-aggregation and competitive adherence tests. The genome of 24SMBc comprises 2,131,204 bps with 1933 coding sequences (CDS), 44 tRNA, and six rRNA genes and it is categorized in 319 metabolic subsystems. Genome mining by BAGEL and antiSMASH tools predicted three novel biosynthetic gene clusters (BGCs): (i) a Blp class-IIc bacteriocin biosynthetic cluster, identifying two bacteriocins blpU and blpK; (ii) an ABC-type bacteriocin transporter; and (iii) a Type 3PKS (Polyketide synthase) involved in the mevalonate pathway for the isoprenoid biosynthetic process. Further analyses detected two additional genes for class-IIb bacteriocins and 24 putative adhesins and aggregation factors. Finally, in vitro assays of 24SMBc showed significant anti-adhesion and co-aggregation effects against Streptococcus pneumoniae strains, whereas it did not act as strongly against Streptococcus pyogenes. In conclusion, we identified a novel blpU-K bacteriocin-encoding BGC and two class-IIb bacteriocins involved in the activity against Streptococcus pneumoniae and Streptococcus pyogenes; likewise the type 3PKS pathway could have beneficial effects for the host including antimicrobial activity. Furthermore, the presence of adhesins and aggregation factors might be involved in the marked in vitro activity of co-aggregation with pathogens and competitive adherence, showing an additional antibacterial activity not solely related to metabolite production. These findings corroborate the antimicrobial activity of 24SMBc, especially against Streptococcus pneumoniae belonging to different serotypes, and further consolidate the use of this strain in URTIs in clinical settings.
The impact of a gluten-free (GF) diet on the intake of calcium and iron is broadly unknown, as the micronutrient content of GF cereal-based products has scarcely been measured. The study aimed to measure the calcium and iron content of GF cereal-based products from the UK. Seventy-three GF products were analysed. A laboratory analysis of calcium and iron from GF food samples was performed by spectrophotometric and flame emission photometry, respectively. The values for wheat-based products were from a nutrient database. The calcium in GF white loaf samples varied greatly from 54 to 140 mg/100 g, with a lower average calcium content compared with wheat-based values (99 ± 29 mg/100 g n = 13 versus 177 mg/100 g; p < 0.01). Only 27% of the white loaves and rolls were fortified with calcium; this contrasts with 100% of white wheat-based loaves. The calcium in GF flour mixes ranged from 54 to 414 mg/100 g, with 66% fortified. GF white pasta had more calcium compared with wheat-based pasta (76 ± 27 mg/100 g n = 7 versus 24 mg/100 g; p = 0.002). The iron in GF bread loaves and pasta samples was similar to wheat-based comparators, whereas lower iron levels were observed in GF wraps (0.8 ± 0.2 n = 11 versus 1.6 mg/100 g). GF bread had a significantly higher fibre content, and the majority of GF bread had a lower protein content, compared with wheat-based bread products. These calcium and iron values provide a valuable addition towards enabling more accurate nutrient intake analysis for adults and children with coeliac disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.