An intramolecular Diels-Alder (IMDA) reaction efficiently accelerated by Schreiner's thiourea is reported, to build a functionalized cytochalasin scaffold (periconiasin series) for biological purposes. DFT calculation highlighted a unique multidentate cooperative hydrogen bonding in this catalysis. The deprotection end game afforded a collection of diverse structures and showed the peculiar reactivity of the Diels-Alder cycloadducts upon functionalization. Biological studies revealed strong cytotoxicity of a few compounds on breast cancer cell lines while actin polymerization is preserved.
Despite the efficacy of most cancer therapies, drug resistance remains a major problem in the clinic. The eradication of the entire tumor and the cure of the patient by chemotherapy alone are rare, in particular for advanced disease. From an evolutionary perspective, the selective pressure exerted by chemotherapy leads to the emergence of resistant clones where resistance can be associated with many different functional mechanisms at the single cell level or can involve changes in the tumor micro-environment. In the last decade, tumor genomics has contributed to the improvement of our understanding of tumorigenesis and has led to the identification of numerous cellular targets for the development of novel therapies. However, since tumors are by nature extremely heterogeneous, the drug efficacy and economical sustainability of this approach is now debatable. Importantly, tumor cell heterogeneity depends not only on genetic modifications but also on non-genetic processes involving either stochastic events or epigenetic modifications making genetic biomarkers of uncertain utility. In this review, we wish to highlight how evolutionary biology can impact our understanding of carcinogenesis and resistance to therapies. We will discuss new approaches based on applied ecology and evolution dynamics that can be used to convert the cancer into a chronic disease where the drugs would control tumor growth. Finally, we will discuss the way metabolic dysfunction or phenotypic changes can help developing new delivery systems or phenotypetargeted drugs and how exploring new sources of active compounds can conduct to the development of drugs with original mechanisms of action.
An intramolecular aryne Diels-Alder reaction with a furan moiety was applied to the synthesis of dihydrobenzo[ de]isochromenes as intermediates toward naphthalimides. After oxidation, this method offers an efficient approach for the synthesis of substituted naphthalimides, which showed potent cytotoxic activity against HT-29 human cancer cell line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.