Background Auxin production by bacteria is one of the most important direct mechanisms utilized by plant growth-promoting bacteria (PGPB) for the betterment of plants naturally because auxin is a plant friendly secondary metabolite synthesized naturally by bacteria, and hence improves the growth of associated plants. So, the current study focuses on bacterial synthesis of Indole-3-acetic acid (IAA) for plant growth improvement. Methods In the current study, the PGPB were selected on the basis of their auxin production potential and their growth promoting attributes were evaluated. Indole-3-acetic acid producing potential of two selected bacterial isolates was observed by varying different growth conditions i.e., media composition, carbon sources (glucose, sucrose and lactose) and different concentrations of precursor. Influence of various physiological factors (temperature and incubation time period) on IAA production potential was also evaluated. Results Both the bacterial strains Bacillus cereus (So3II) and B. subtilis (Mt3b) showed variable potential for the production of bacterial IAA under different set of growth and environmental conditions. Hence, the IAA production potential of the bacterial isolates can be enhanced by affecting optimum growth conditions for bacterial isolates and can be used for the optimal production of bacterial IAA and its utilization for plant growth improvement can lead to better yield in an eco-friendly manner.
Plant growth promoting rhizobacteria (PGPR) promote plant growth by various mechanisms such as phytohormone production, enhanced water and nutrient uptake, improved nitrogen availability in the soil, production of ACC-deaminase for ethylene breakdown, phosphate solubilization, siderophore production etc. Microbial auxin production is the major factor not only responsible for strengthening the plant-microbe relationship but it also promotes plant growth and development in a positive manner. Thus, bacterial auxin production potential can be exploited for plant growth improvement that may be effective in reducing the hazardous effects of chemical fertilizers on the ecosystem used to obtain higher yields. The present review gives a better understanding of various factors and mechanisms involved in auxin production by PGPR that may be helpful in proper exploitation of these natural resources in a beneficial way.
The existence of peste des petits ruminants (PPR) in domestic ruminants and camels in Sudan during 2008-2012 was investigated. Lung tissues and serum samples were randomly collected from sheep, goats, cattle, and camels at different areas of Sudan. A total of 12,384 serum samples were collected from clinically healthy 7413 sheep, 1988 camels, 1501 cattle, 1459 goats, and 23 gazelles at different areas in the Sudan. They were examined for PPR antibodies using competitive ELISA (cELISA). The overall detected seroprevalence of PPR in tested sera was 49.4%; seroprevalence values within species were 67.1, 48.2, 25.8, 2.1, and 21.7% in sheep, goat, cattle, camels, and gazelles, respectively. The highest seroprevalence (68.1%) was observed in sera collected from Darfur states, then the central states (54.3%). A total of 1276 lung tissue samples (623 sheep, 324 cattle, 220 camels, and 109 goats) were collected. The majority of lung samples were collected from clinically healthy animals that showed lesions on PM in slaughterhouses (95%) and during PPR outbreaks; samples were tested for PPR antigen using immunocapture ELISA (IcELISA). PPR antigen was detected in 233 out of the 1276 tested samples (18.3%). Positive results were observed in samples collected from clinically healthy and diseased animals. The observed prevalence values in each species were 33.6, 21.1, 15.4, and 12.3% in camel, goat, sheep, and cattle, respectively. PPR antigen was detected in samples from different areas; however, the highest prevalence (63.9%) was found in samples collected from the eastern states, then Khartoum state (28%). Trials for virus isolation were done in different cell cultures. Out of 30 IcELISA-positive samples inoculated in primary bovine and ovine kidney cells, Vero cells, the PPR virus was successfully isolated from 15 (eight sheep, five camels, and two goats) samples in the three cell culture types. Using RT-PCR, PPRV nucleic acid was detected in all 25 IcELISA-positive tested samples.
Plant-associated bacteria are known to improve plant growth and play a major role in the development of plants. The present study is concerned with the isolation of two auxin-producing plant growth-promoting bacteria (PGPB). On the basis of 16S rRNA sequencing, both of the strains are identified as Bacillus sp. Maximum auxin production was observed at 37 °C after 48 h of incubation. Increase in tryptophan concentration stimulated auxin production by the isolates. High-performance liquid chromatography analysis showed that the bacterial auxin exhibited similar retention time as the standard indole-3-acetic acid (IAA). Sprouts of Solanum tuberosum var. Desiree were inoculated with the isolates. Comparison of various growth parameters of inoculated plants with non-inoculated plants revealed the improvement of plant growth by bacterial inoculation. Almost 40 and 35 % increase in shoot length with P4 and S6 inoculation, respectively, was observed. Considerable improvement in root growth was observed with an increase in the number and length of roots. On the basis of the above findings, it is concluded that the plant growth-promoting Bacillus strains affect S. tuberosum beneficially, resulting in improved plant growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.