Blockchain is increasingly being used as a distributed, anonymous, trustless framework for energy trading in smart grids. However, most of the existing solutions suffer from reliance on Trusted Third Parties (TTP), lack of privacy, and traffic and processing overheads. In our previous work, we have proposed a Secure Private Blockchain-based framework (SPB) for energy trading to address the aforementioned challenges. In this paper, we present a proof-on-concept implementation of SPB on the Ethereum private network to demonstrates SPB's applicability for energy trading. We benchmark SPB's performance against the relevant state-of-the-art. The implementation results demonstrate that SPB incurs lower overheads and monetary cost for end users to trade energy compared to existing solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.