Please cite this article as: Okereke, M.I., Akpoyomare, A.I., Bingley, M.S., Virtual testing of advanced composites, cellular materials and biomaterials: a review, Composites: Part B (2014), doi: http://dx.doi.org/10. 1016/ j.compositesb.2014.01.007 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
AbstractThis paper documents the emergence of virtual testing frameworks for prediction of the constitutive responses of engineering materials. A detailed study is presented, of the philosophy underpinning virtual testing schemes: highlighting the structure, challenges and opportunities posed by a virtual testing strategy compared with traditional laboratory experiments. The virtual testing process has been discussed from atomistic to macrostructural lengthscales of analyses. Several implementations of virtual testing frameworks for diverse categories of materials are also presented, with particular emphasis on composites, cellular materials and biomaterials (collectively described as heterogeneous systems, in this context). The robustness of virtual frameworks for prediction of the constitutive behaviour of these materials is discussed. The paper also considers the current thinking on developing virtual laboratories in relation to availability of computational resources as well as the development of multi-scale material model algorithms. In conclusion, the paper highlights the challenges facing developments of future virtual testing frameworks. This review represents a comprehensive documentation of the state of knowledge on virtual testing from microscale to macroscale length scales for heterogeneous materials across constitutive responses from elastic to damage regimes.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Predicting the effective thermo-mechanical response of heterogeneous materials such as composites, using virtual testing techniques, requires imposing periodic boundary conditions on geometric domains. However, classic methods of imposing periodic boundary conditions require identical finite element mesh constructions on corresponding regions of geometric domains. This type of mesh construction is infeasible for heterogeneous materials with complex architecture such as textile composites where arbitrary mesh constructions are commonplace. This paper discusses interpolation techniques for imposing periodic boundary conditions on general finite element mesh constructions for predicting the effective elastic properties of a variety of heterogeneous materials. Benchmark virtual tests on identical and non-identical meshes demonstrate the high fidelity of the proposed periodic boundary conditions enforcement technique, in comparison to a conventional technique of imposing periodic boundary conditions and experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.