The targeted drug delivery has been studied as one of the main methods in medicine to ensure successful treatments of diseases. Pharmaceutical sciences are using micro or nano carriers to obtain a controlled delivery of drugs, able to selectively interact with pathogens, cells or tissues. In this work, we modified bovine serum albumin (BSA) with lactose, obtaining a neoglycan (BSA-Lac). Subsequently, we synthesized glyconanoparticles (NPBSA-Lac) with the premise that it would be recognized by microbial galactose specific lectins. NPBSA-Lac were tested for bio-recognition with adhesins of E. coli K88 and Ricinus communis agglutinin I (RCA). Glycation of BSA with lactose was analyzed by electrophoresis, infrared spectroscopy and fluorescence. Approximately 41 lactoses per BSA molecule were estimated. Nanoparticles were obtained using water in oil emulsion method and spheroid morphology with a range size of 300-500 nm was observed. Specific recognition of NPBSA-Lac by RCA and E. coli K88 was displayed by aggregation of nanoparticles analyzed by dynamic light scattering and atomic force microscopy. The results indicate that the lactosylated nanovectors could be targeted at the E. coli K88 adhesin and potentially could be used as a transporter for an antibacterial drug.
An electrochemical sensor was fabricated for the rapid and simple detection of enrofloxacin (EF). Modification of screen-printed gold electrodes (SPE) with molecularly imprinted polymers (MIPs) allowed the detection of enrofloxacin by square wave voltammetry (SWV), measuring the oxidation peak at +0.9 V. The detection principle of molecularly imprinted polymers (MIPs) is based on the formation of binding sites with affinities and specificities comparable with those of natural antibodies. The detection of enrofloxacin showed a linear range of 0.01–0.1 mM with a detection limit LOD of 0.02 mM. The development of a non-imprinted polymer (NIP) control sensor allowed for better and more efficient detection. In addition, the sensor is portable, having the advantage of analyzing and detecting molecules of interest without the need to take the sample to a laboratory.
Nanomedicine has led to the development of new materials able to improve the pharmaceutical effect of bioactive components, broadening the options of treatment for several diseases, including cancer. Chitosan (Cs) has been firmly established as biocompatible and biodegradable low-toxic polymer able to form complexes with bioactive agents, making them promising drug delivery vehicles. Additionally, some snake venom toxins such as A2 phospholipases (PLA2s), serine proteinases (SVSPs) and metalloproteinases (SVMPs) have been reported to present cytotoxic activity in different tumor cell-lines, making them an auspicious option to be used as cancer pharmaceuticals. In the present study, we identified the major proteins in a northern black-tailed rattlesnake (Crotalus molossus molossus) venom, and hemocompatibility and cytotoxic activity against T-47D breast carcinoma cells were evaluated. Afterwards, the venom was loaded into Cs nanoparticles through the ionotropic gelation process with tripolyphosphate (TPP), obtaining particles of 415.9 ± 21.67 nm and a zeta potential of +28.3 ± 1.17 mV. The Cs-Venom complex was able to deliver the venom into the breast carcinoma cells, inhibiting their viability and inducing morphological changes in the T-47D cells. Although more studies are required, we suggest the potential use of C. m. molossus venom toxins entrapped within polymer nanoparticles for the future development and research of cancer pharmaceuticals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.